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Abstract

In this work we address the problem of tolerance
representation and analysis across the domains
of industrial inspection using sensed data, CAD
design, and manufacturing. Instead of using
geometric primitives in CAD models to define
and represent tolerances, we propose the use of
stronger methods that are completely based on
the manufacturing knowledge for the objects to
be inspected. We guide our sensing strategies
based on the manufacturing process plans for
the parts that are to be inspected and define,
compute, and analyze the tolerances of the parts
based on the uncertainty in the sensed data
along the different toolpaths of the sensed part.
We believe that our new approach is the best
way to unify tolerances across sensing, CAD,
and CAM, as it captures the manufacturing
knowledge of the parts to be inspected, as op-
posed to just CAD geomelric representations.

1 Introduction

In this work we address the problem of recovering man-
ufacturing tolerances and deformations from the uncer-
tainty in sensing machine parts. In particular, we uti-
lize the sensor uncertainty to recover robust models of
machine parts, based on the probabilistic measurements
recovered, for inspection applications. We design and
implement a spline-based model that captures manufac-
turing tolerancing based on uncertain sensed data and
knowledge of possible manufacturing process plans.

We design and implement our sensing strategies and
tolerance determination algorithms based on interval
splines. We believe this is the best way to define a
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unifying framework, as it captures both parameteriz-
able manufacturing tolerancing errors, and non-easily-
parameterizable ones (toolpaths that produce a surface
definition, for example). This method is also suitable
for our purposes as our CAD modeler (The Alpha_1 sys-
tem, designed at the University of Utah) is based on
spline representation, and it is used to produce process
plans and toolpaths for NC milling machines to manu-
facture the actual parts from CAD models. Our toler-
ancing method captures the mechanical way in which the
manufacturing tool moves and actually makes a feature,
surface or curve in a manufacturing process.

The standard representations for Computer Aided De-
sign include volumetric, boundary and CSG models.
Current advanced modelers, can produce process plans
for specific machines in order to manufacture the object.
We believe that the process plan and associated informa-
tion (e.g., the tool path, the tool to be used, its speed,
etc.) provide a strong basis for analyzing the manufac-
turing and inspection steps with respect to tolerances.

A tolerance specification on the shape geometry must
be transformed into the corresponding tolerance on the
machining operation and vice versa. This in turn can
be used to select an appropriate manufacturing process,
given knowledge of the manufacturing accuracy of the
process. This yields direct methods for deciding on sens-
ing strategies both to monitor the manufacture of the
part, as well as for post-manufacturing inspection. These
sensing strategies are derived from an analysis of where
the toolpath is most likely to deviate from the tolerance
specification.

These must all be done as efficiently as possible; in
particular, it must be:

o straightforward to choose the cheapest manufactur-
ing process, to go as fast as possible on that ma-
chine,

e to make as few sensed measurements as possible,
and

e to perform as little computation as possible.



The keys to our approach are:

¢ have/use knowledge about each feature and machin-
ing process for that feature, and

e exploit the tool path representation to guide analy-
sis and sensing strategies.

The usual approach to validation is to simply measure
the geometry resulting from the manufacturing process
and compare it to the nominal geometry from the CAD
model. We believe that a stronger approach, exploiting
knowledge of the process plan and the particular man-
ufacturing process, is possible, and that this approach
permits the automatic synthesis of sensing strategies.

To achieve this requires a tolerance specification
which:

o specifies design geometry tolerance as well as tool-
path tolerances, and

o helps locate high payoff (i.e., maximal information
gain) inspection regions.

We are working with the Alpha_1 Computer Aided Ge-
ometric Design system and exploiting its ability to gen-
erate process plans for 3 and 5-axis NC milling machines.
For these machines, the process is a set of toolpaths with
appropriate tools, speeds, etc., specified. Thus, a sens-
ing strategy is a set of sensing operations carried out at
particularly high risk parts of the toolpath or places on
the completed part.

2 Background, Motivation, and
Methodology

The traditional approach to structuring sensing strate-
gies and tolerance computation for the inspection of ma-
chine parts has been to utilize the sensed data (range,
image, and/or touch) and the recovered geometries of
the sensed objects for guiding the sensors to get more
data and to do better fittings at the “relevant” or “un-
certain” regions. We propose an approach that is based
on the knowledge of the actual manufacturing process for
the parts to be inspected, as opposed to only the sensed
data points and the recovered geometric CAD model.
Our approach utilizes the knowledge of the process plan
and the subsequent toolpath of the milling machines and
the errors, uncertainties, and tolerances associated with
that process to achieve an optimal sensing strategy at
the relevant regions, features, and manufacturing path
on the parts to be inspected. We anticipate that this
approach will not only permit us to answer questions
concerning design and manufacturing processes, but also
gives a way to determine places in the process and on the
part where sensing is useful to ensuring that tolerances
are met.

We propose toolpaths with tolerances as an instance of
the manufacturing process (process plan) that provides a

unifying approach to dealing with tolerance and sensing
issues across design, manufacturing and inspection. We
give examples of tolerance-based techniques for manufac-
turing features and for inspection purposes. The relation
between part error models and tolerance specifications is
outlined. The initial design of a unified framework for
manufacturing-based sensing strategies for manufacture
and inspection is given; the key is to tag tolerances to
the manufacturing process itself (e.g., we use the tool-
path and tolerance for NC milling).

The importance of quantifying tolerance in the speci-
fication, design, manufacturing and inspection process is
obvious. Unfortunately, adequate representations of tol-
erance do not exist which permit dialog between these
various aspects of the manufacturing process. This lack
is particularly acute in systems which tightly integrate
all of the aspects of prototyping (i.e, Manufacturing,
Design, and Sensing for inspection). We use the tol-
erance specification in conjunction with knowledge of
the manufacturing process plans to determine more op-
timized sensing strategies. We propose to avoid the use
of weak methods (e.g., comparing nominal geometry to
dense range data from the actual part), and to synthe-
size strong process monitoring and inspection strategies
based on detailed knowledge of geometry, tolerance spec-
ification, manufacturing features and processes, and the
sensors involved.

The use of interval Bezier curves for a complete de-
scription of approximation errors was proposed by Seder-
berg and Farouki[5] (see paper for details). The basic
idea is to extend splines to polynomials whose coeffi-
cients are intervals with well defined arithmetic opera-
tions. Such splines define a region in space rather than
a curve. This notion captures very nicely the semantics
of a tolerance specification. We have developed inter-
val curves for both 2D and 3D and algorithms based
on interval splines for machine toolpath representation.
We have also implemented toolpath-based algorithms for
answering tolerance questions in inspection of parts, and
for structuring coarse-to-fine sensing strategies based on
tolerance regions around sensed data.

Our goal is to develop a methodology which helps
to guarantee that the intended tolerance specification
is met as efficiently as possible. There issue we ad-
dress in our framework is to validate that the tolerances
have been achieved in the actual part that is inspected.
This process involves sensor measurements either dur-
ing the manufacturing phase or post-manufacture in-
spection. To ensure that the tolerance has been met,
sensors are used to:

e measure the manufacturing process (e.g., table po-
sition during NC milling),

e measure parameters of manufacturing features (e.g.,
use a Coordinate Measurement Machine to obtain



hole diameter), and

¢ measure points on the surface directly and analyze
them.

Of course, sensor error/uncertainty must be accounted
for.

In order to structure the analysis process, we focus
here on NC milling, and use the toolpath as the ba-
sis upon which design and manufacturing tolerance and
sensor measurements will be compared. Much as opera-
tional semantics allows the meaning of a high level pro-
gram to be defined in terms of the particular architecture
upon which it executes, so can the CAD specification of
a part be defined in terms of the machining operations
which produce its shape. Given the CAD geometry for a
part, a tolerance specification, and a class of NC mill to
be used, then generic knowledge about such mills can be
used to generate a desired toolpath with its associated
tolerance (call it TPy. Once a specific mill is selected,
then the nominal toolpath from TP, together with the
accuracy of the mill determine the actual toolpath (call
this TP, These two toolpaths allow us to determine a
great deal about the efficiency and uncertainty regions
of the process. First, if TP, C T Py is true, then we know
that the tolerance should, in principle, be achieved. If
TP; — TP, is large, then the selected machine may be
too precise, and therefore, too expensive. If the bound-
ary of TP, is close to that of T Py, this signals places
where sensing may be necessary to guarantee the inclu-
sion relation. This also gives insight into how accurate
the sensing needs to be. Even if TP, is not contained
in TPy, this approach allows us to estimate what per-
centage of milled parts will be out of spec, and thus an
informed decision can be made whether to tighten the
accuracy of the machine, or where to sense with high
probability of part error. Thus, the toolpath representa-
tion allows insight into design, manufacture and inspec-
tion in a common framework.

3 Interval Splines and Generalization:
Checking that all points reach the
tolerance goal

3.1 Interval Splines

The use of interval Bézier curves for a complete descrip-
tion of approximation errors was proposed by Sederberg
and Farouki[5]. The basic idea is to extend splines to
polynomials whose coeflicients are intervals with well de-
fined arithmetic operations. Such splines define a region
in space rather than a curve. This notion captures very
nicely the semantics of a tolerance specification, espe-
cially when it is generalized in 3D: if the assumption is
made that the sensing error is Gaussian, then it can be
described it by an ellipsoid around each sensed point (us-
ing a step value). Thus, along a sensed toolpath, an off-
set surface is produced (see [3]). We have only assumed

that the enclosing envelopes are described by ellipses in
planes orthogonal to the toolpath. Hence our algorithm
allows for representing volumetric error and can easily
be extended to other shapes than ellipses - which means
different offset surfaces. This approach will require the
ability to answer the question: is one ellipse inside the
other one ? as fast as possible - when they are in the
same plane. The final test will be to check the reliabil-
ity of the proposed algorithm on real sensed data, along
manufacturing toolpaths on parts that are inspected.
The algorithm uses a property that is associated with
curves of the same degree, which is the basis of interval
splines. Since a Bézier curves of degree k is deduced from
the control point by the recursive equation (see [4]):

PMt)= P (j~k<i<])
andfor 0 <r<k-1

P = tPI(D)+ (1 - P, (1)

when j—k+r<i<yj
PJl‘(t) = 5(2).
For curves of same degree, if the corresponding control
points are on a line (resp. on a plane), then during this
recursive process each corresponding P (t) will also be
on a line (resp. on a plane), hence for all ¢ the different
evaluations (S)(t), S2(t) ...) will give points on a line
(resp. on a plane). An easy way to ensure that the
control points are on a line is to have initial points on a
line too, since the control points are deduced by a linear
operator.

3.1.1 2D Interval Splines

Figure 1: One Interval Spline

In our 2D representation, an interval is a set of 3 points
(corresponding to the nominal point and two bounds).
The spline interpolation is done (on 6 consecutive points)
separately on each of the 3 corresponding curves (see
Figure 1). Note that evaluation at any parameter ¢ €
[0, 1] yields 3 points on a line.



As indicated above, the determination of inclusion of
one interval spline within another is important. Figure 2
shows the case where inclusion is true.

Figure 2: TP, C TDy

We have developed a technique to answer this question
(see section 3.2.2). Moreover, if one interval contains
another, then the 2-D difference of the two intervals is
also possible to determine.

3.1.2 3D Interval Splines

In 3D, we’ve assumed that the uncertainty around a
point is described by an ellipse (in the plane normal to
the curve). Thus, we also use 3 points to describe the
ellipse (X for the nominal point, and X; and X3 the two
extreme points along the two axis of the ellipse). The
problem reduces to determining whether one ellipse is
inside another. We have developed an algebraic solution
to this problem (see section 3.2.3).

3.2 Description of the Algorithm

There is no significant difference between the 2D and
the 3D algorithm, except for the part that compares two
intervals (resp. two ellipses). Both algorithms use a
procedure to check if the interval spline from the sensing
device (We used a GRF-2 light stripper scanner) is inside
the interval spline of the allowable tolerance model.

3.2.1 Common part

To verify that one interval spline is inside another, the
following three steps are used:

1*¢; Putting the parameters of the 2 splines together:
We want to ensure that for all ¢ the two corresponding
intervals are on the same line (resp. in the same plane,
for ellipses). We implement a divide and conquer algo-
rithm, using the sign of:

z(t) = =z
det | y(t) w1 w3
1 1 1

or (in the 3D case)

Ty T2 Z3

)
) yi Y2 y3
) Zy Z2 23

Figure 3: Included Interval Spline

Those two determinants are the equations of the lines
(or the plane where the ellipse lies) that correspond to
one interval spline, thus the algorithm cuts the second in-
terval spline to redefine it (the determinant utilizes the
initial points used to define the first interval spline at
the beginning). So there is no need to have two inter-
val splines of same degree at the beginning, since the
second one is completely rebuilt (with the same degree,
and control points on the same line or plane as the first
interval spline). See figure 3 where I = (a, b, ¢) cuts the
interval spline I in d, f and e to define a new interval:
with classical methods, that have to be done (see [6]).

2"4: Compare as many intervals as possible.
Now that the intervals came together, this part is com-
putable in O(n) where n is the number of points on a
spline (resp. ellipses).

374 When 2" fails, check if it’s an ending:

If not, then the inclusion fails. This check has to be
made as both splines do not necessarily begin or end at
the same time.

To check an ending, the methods in 2D and 3D are very
similar. The method utilizes the fact that the sign of
the determinant of vectors gives the orientation of such
a frame - when it is compared to the canonic frame.
Hence, comparing two determinants can decide whether
two points are on the same side of a line or a plane. See
figure 4 for the 2D vectors.

For example, in 2D you compare the signs of det(V, V1)
and det(V, V). A same sign means the points are on the
same side.



Figure 4: Two Interval Splines

Figure 5: How to compare two intervals that are not
necessarily paralle]

3.2.2 Comparing two intervals

Here we check to ensure that 0 < V.V; < [|V|? (i =
1,2), and to check the angles between the vectors (V, V;)
(i =1,2) (see figure 5).

3.2.3 Algebraic Solution to Ellipse Inclusion

If the two ellipses do not intersect and if the center of

one is inside the other, then one is contained by the other
one. For the intersection of ellipses, we have developed
an algebraic solution using the Sturm Theorem (see [1]
or [2] for more details).
We assume that the implicit equation of the ellipse with
center X, and which go through the extreme points X,
and X3 (assumed to be along the 2 orthogonal axis, but
it is not necessarily the case along the curve) is given by
the following:

take V; = HKH# and V, = ﬂ% then:

- —

M € ellipse <= (XM V)2 + (XM.V3)? =1

We also also assume that the second ellipse has the fol-
lowing parametric equation (same approximation):

2t
1412

e -— 2 e
xix+ 828 xr

_ v/
M) = X'+ =

substituting this point in the implicit equation of the
other ellipse gives the following polynomial of degree 4:

(XX Vi + 2XTX' Vi + (1 — ) X5X".Vh)?

XX Vo + 2XTX' Vo + (1= 1) X5 X' V5)? = (1417)°

The real roots — if they exist — realizes up to 4 points
of intersection of those 2 ellipses. The Sturm theorem on
polynomials suggests an algorithm to find the number of
roots of any polynomial. If this algorithm is applied on
a polynomial with symbolic variables as its coefficients,
one can get a condition that determines when (and only
when) the polynomial has a real root. If this is per-
formed on the polynomial X% + aX? + bX + ¢ we find!:

I'= 2a® — 8ac+ 92
A = 16a%c —4a5b? — 128a%¢? + 144ab?c
—27b% 4 256¢8

X%+ aX?+ bX + ¢ has no real roots if and only if
(a>0and A>0)or(a>0and T =0) or (a <0 and
I'>0and A > 0)

If the polynomial X%+ dX3 is viewed as the beginning
of the expansion of (X + «)* then one can see that an
appropriate translation transforms any degree 4 polyno-
mial into a polynomial 7% 4+aT2? 4 bT+c with T = X —a.
For our problem, the resulting values of a,b and ¢ are
given by the equations:

Al = —X;)('Vi

Ay = —X{X’ Va

Cy = (XX'+ X5X").V, Cap= (XX +X,X').V;

A= /AT Ag

B:VB?-{-B;
Cz\/Cl +Cz

then P(t) = cqat? + c3t® + c2t? + ¢t + ¢o with

By = 2X{ X'V,
By =2X!X'.V,

C4 = A1 c3 = 2(A1.B] + Asz)
Ccy = B? + 2(A101 + AxCy — 1)
c1 = 2(B1C1 + B2Cs) co=C%-1
and finally, we can find « and then a,b and c:
3 ¢y — Bega®

464 C4

po L~ 4eq0® — 2a(cz — 6cga?)

C4

co — caa + a®(cp — 6csa?) — afcy — 4eqa®)

C4

'result taken from the course “geométrie semie-
algébrique” from Professor Coste (University of Rennes,
France), DEA IMA.



4 Experimental Results

4.1 Tests on some mathematical curves

two interval splines

bhisocsnwana

Figure 6: Case when the tolerance goal fails clearly

two interval splines

Figure 7: Opened tore with a vertical deformation

Tests were carried out both in 2D and 3D, but since 3D is
more relevant to this project (and more difficult) we will
only describe the 3D experiments. We have done some
tests on 3D lines , parabolas, and sin curves, surrounded
by ellipses that were allowed to turn around the central
curve with different speeds. The tests show that it is
very important to ensure that the surface do not cross
itself, and that the algorithm will only compare the first
connected component of the common part - thus, if there
1s an intersection only on the second connected compo-
nent, the algorithm will not find it.

We have many results from different mathematical
curves, and the algorithm works as expected, with or

without an intersection. The figure 6 shows a case then
the inside surface has been lifted enough to make an in-
tersection. Figure 7 is a regular case.

4.2 Tests along the sensed toolpath for an
inspected cover plate

The algorithm was tried on real sensed data, from the
GRF-2 scanner, along a toolpath from a manufactured
cover plate pocket. The scanner was not very accurate,
so first we recognized pieces of lines and arcs out of the
noisy points from the scanner and defined those as our
nominal curve. This is not a bad approximation as the
NC milling machine tool actually moves only in straight
line and curve segments. For each points from the scan-
ner we find the closest point to this nominal curve and -
eventually - increase the radius of the sphere around the
nominal point to include the point from the scanner. Fi-
nally, we smooth the values from the radius 40 times and
define the surface with circles orthogonal to the path.
Our algorithm compares it to the tolerance spline model,
a few runs produced a good idea of the minimum specifi-
cations. Notice that both nominal curves from the model
and from the scanner are quite different at some spatial
instances, certainly because of a scale factor or a defor-
mation from the scanner. Accurate data from a CMM
along a toolpath would produce a much more precise
input for the algorithm.
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Figure 8: The points from the scanner and the computed
offset surface: cutting of the inner pocket

The figures 8 and 9 represent the inner profile, and
figure 10 is the outer profile of the cover plate pocket.
For the first one, we have found that a radius around
the nominal curve of the model should be more than
0.12 cm. For the outer profile, we have found that 1t
should be more than 0.065 cm. It should be obvious that



two interval splines
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Figure 10: The points from the scanner and the com-
puted offset surface: a detail of the outer pocket

more precise results can be obtained with more runs.
As one can see on the cross section of the outer pocket
(figure 10), a few bad points can badly influence the
result, specially if there is already an error between the
two nominal curves.

5 Conclusions

We propose toolpaths with tolerances as a unifying ap-
proach to dealing with tolerance issues across design,
manufacturing and inspection. Not only does this permit
us to answer questions concerning design and manufac-
turing processes, but also gives a way to determine places
in the process and on the part where sensing is useful to
ensuring that tolerances are met. We have developed al-
gorithms and implementations based on interval splines.
We consider our major contributions to be:

¢ Proposing inspection strategies based on manufac-
turing knowledge as opposed to data or geometry
driven techniques.

e Proposing a new unifying framework for tolerance
representation, analysis, and recovery, across man-
ufacturing, design, and sensing for inspection.

o Showing that lower-level manufacturing features
such as tool paths provide a unified framework to
analyze tolerances in design and manufacture of ma-
chined parts.

e Toolpath-based computational framework for er-
ror, uncertainty, and tolerance representation in the
manufacturing, CAD, and inspection domains.

o Using a CAD specification of a part defined in terms
of the machining operations (toolpaths) which pro-
duce its shape to structure the sensing strategy, de-
sign, and manufacturing processes (analogous to op-
erational semantics for defining a high level program
in terms of the particular architecture upon which
it executes).

e Using 2-D and 3-D interval Bezier curves for tool-
path representation, and developing the correspond-
ing interval spline algorithms to answer tolerance
questions across sensing, design, and manufactur-
ing.
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