Operator/System Communication : An Optimizing Decision Tool

Tarek M. Sobh and Tarek Alameldin

Department of Computer and Information Science
School of Engineering and Applied Science
University of Pennsylvania, Philadelphia, PA 19104

Abstract

In this paper we address the problem of operator/system communication. In particular, we
discuss the issue of efficient and adaptive transmission mechanisms over possible physical links.
We develop a tool for making decisions regarding the flow of control sequences and data from and
to the operator. The issue of compression is discussed in details, a decision box and an optimizing
tool for finding the appropriate thresholds for a decision are developed. Physical parameters like
the data rate, bandwidth of the communication medium, distance between the operator and the
system, baud rate, levels of discretization, signal to noise ratio and propagation speed of the
signal are taken into consideration while developing our decision system. Theoretical analysis is
performed to develop mathematical models for the optimization algorithm. Simulation models
are also developed for testing both the optimization and the decision tool box.

1 Introduction

Data which is transmitted over a communication medium between the operator and the system, which
might be a mobile robot, contains some form of redundancy. This redundancy can be exploited to
make economical use of the storage media or to reduce the cost of transferring the data and commands
over the communication network. One of the basic issues in the design of the presentation layer is to
decide whether data is to be compressed before transmission or not. Many factors may affect making
this decision, one of the most important ones is the cost factor. It should be clear that the more
information (bits) that are sent over the network, the more money that one has to pay. Compressing
data before sending it will often help reduce the cost.

Some other factors may affect the decision of compression. The time factor may be the influencing
one, in fact, one should not forget that there is the overhead of the compression and decompression
algorithms at the sender and at the receiver hosts. This overhead is both in time and money, as the
CPU is used for running the algorithms. Thus, the designer always faces the problem of when should
one compress the data. The parameters which may affect this decision might be the parameters of the
physical communication medium, they might also be the parameters of the compression algorithm
used or both.

The decision that the design engineer will have to make might be a decision to compress or not given
a certain fixed compression and physical medium parameters, or it might be a decision to compress
depending on the value of one or more of the parameters (i.e., to compress if a certain threshold is
met). In our work, we try to develop a tool for making such a decision, we choose the time to be the
criteria for making compression decision, where the time is both for the compression overhead and
for transmission. We develop a yes/no decision box given some fixed parameters and an optimizing
decision box for finding the threshold for one varying parameter while fixing the others. Theoretical
analysis is performed and also simulations for different sets of data and a decision (or a threshold)
is output for each kind of analysis.

524 / SPIE Vol. 1388 Mobile Robots V (1990)

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 10/15/2013 Terms of Use: http://spiedl.or g/terms

2 Physical and Compression Parameters

The parameters of the communication medium between two hosts will affect the decision regarding
compression. Whether the medium be a coaxial cable, a fiber optic cable or air (in the case of radio
transmissions) it can always be completely specified by parameterizing it. The parameters that may
help in determining the transmission time can be listed as follows :

o The data rate in bits per second. { D bps }

e The band width of the medium in hertz. { B Hz }

o The distance between the two hosts under consideration in meters. { L m }
o The levels of discretization. { [}

e The baud rate in changes per second. { b }

e The signal to noise ratio in decibels. { S dB }

e The propagation speed of the signal in the medium, in meters per second. { P m/s }

It should be noticed that there is redundancy in expressing the time for transmission using all those
parameters and the number of bits sent. For example, it is sufficient to use the number of bits and
the data rate to express the time. However, if the data rate is not available we can use the baud
rate, the levels of discretization and the data size, or alternatively we can use Shanon’s maximum
data rate bound, thus using the band width, the signal to noise ratio and the data size to find an
expression for the minimum time for transmission.

The other set of parameters that is involved with the computation of the time for transmitting a
certain amount of data is the set of the compression algorithm parameters. The CPU run time
as a function of the size of data input to the algorithm is one of those parameters. The expected
compression ratio, which actually depends on what type of data to be transmitted is the second
compression parameter of concern.

3 Mathematical Formulation

The problem can be mathematically formulated by trying to find the cost of sending a certain number
of bits from a host to another. The cost will be assumed to be the time through which the channel
will be kept busy sending the data plus the time that will take the CPU to perform the compression
and decompression on the data that are required to be transmitted. One can use a weight in the
cost expression to denote that, for example, the cost for utilizing the network cable for one second
is X times the cost for utilizing the CPU for one second. Thus, the expression for the cost function
may be written as :

Transmission time + X x CPU computation time

where X is the ratio between the cost of using the network for one unit time and the cost of one unit
CPU time.

SPIE Vol. 1388 Mobile Robots V (1990) / 525

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 10/15/2013 Terms of Use: http://spiedl.or g/terms

3.1 The Transmission Time

If we make the assumption that we only have two hosts connected directly and ignore the other
overheads of the protocol to be used, the time needed to transmit N bits from a host to another
can be written as a mathematical expression in terms of the physical medium parameters. For our
implementation we are going to develop the transmission expression in four different ways, using
four different sets of physical parameters, where each set individually is sufficient to specify the
transmission time T'1 completely.

3.1.1 Formulation Using the Data rate

The time required for transmitting N bits can be formulated as follows :

T1=5+'}3

where D is the data rate in bits per second, L is the distance between the two hosts and P is the
signal propagation speed. The first term is for the emission of N bits from the sender and the second
term is the time for the last bit to reach the receiver.

3.1.2 Formulation Using the baud rate

The time required for transmitting N bits can be formulated as follows :

N L
+

T blog,l ' P

where b is the baud rate in changes per second, [is the number of levels of discretization, L is the
distance between the two hosts and P is the signal propagation speed. The first term is for the
emission of N bits from the sender and the second term is the time for the last bit to reach the
receiver,

T1

3.1.3 Formulation Using the band width

The time required for transmitting N bits can be formulated as follows :

__ N L
"~ 2Blog,l P
where B is the band width in Hertz, [is the number of levels of discretization, L is the distance
between the two hosts and P is the signal propagation speed. The first term is for the emission of

N bits from the sender and the second term is the time for the last bit to reach the receiver. In this
case, there is assumed to be no noise whatsoever, we are assuming the maximum possible data rate.

T1

3.1.4 Formulation Using the Signal to Noise Ratio

The time required for transmitting N bits can be formulated as follows :

N L
T1= — + =
Blog,(1+10%) P
where B is the band width in Hertz, S is the signal to noise ratio in decibels, L is the distance
between the two hosts and P is the signal propagation speed. The first term is for the emission of
N bits from the sender and the second term is the time for the last bit to reach the receiver. In this
case Shanon’s maximum data rate of a noisy channel is assumed.

526 / SPIE Vol. 1388 Mobile Robots V (1990)

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 10/15/2013 Terms of Use: http://spiedl.or g/terms

3.2 The Compression and Decompression Times

The run times of the algorithm for compression and decompression can be expressed as a function
of the size of the input in terms of machine cycles. That is, the compression time can be expressed
as T2(M) where M is the size of data that is input to the compression algorithm.

3.3 Total Cost Without Using Compression

The total time to send N bits without using compression would then simply be equal to the transmis-
sion time, thus it equals one of the four expressions discussed previously. The total cost is considered
to be only the time during which the communication channel is utilized.

3.4 Total Cost Using Compression

The total cost for transmitting a sequence of bits using compression will be assumed to be a weighted
combination of the times for transmission and the times for compression and decompression. Thus,
if we assume the compression ratio of the algorithm to be equal to R, and X is the ratio between
the cost of using the network for one unit time and the cost of one unit CPU time and if we also
assume a variable page size, i,e. compression is to be performed before each transmission of a block
of size M of data, the total cost to be incurred (when we express the transmission time in terms of
the data rate) can be written as :

L 1
D +F+X(fl(M)+f2(EM))

where fl and f2 are the compression and decompression runtime functions (in terms of the input
size).
Similarly, the total cost can be written for the other physical medium sets of parameters as :

1

c=XM L v+t
= Blog,1 T P ((R
or
1
__®RM L 1
= SRt XM + 22 M)
or

c=—RM L vinion i
Blogy(1+10%) P R

4 Compression Algorithms

The methods to compress data have been studied for many years. However, several problems have
prevented the widespread integration of compression methods into computer systems for automatic
data compression. These problems include poor runtime execution preventing high data rates, lack
of flexibility in the compression procedures to deal with most types of redundancies and storage
management problems in dealing with storage of blocks of data of unpredictable length. In most
cases a method presents some subset of these problems and therefore is restricted to applications

SPIE Vol. 1388 Mobile Robots V (1990) / 527

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 10/15/2013 Terms of Use: http://spiedl.org/terms

where its inherent weaknesses do not result in critical inefficiencies. In this section we shall review
the different forms of redundancies that can be taken advantage of for compression and then look at
some of the approaches taken towards this end. Then we shall present a method due to Welch [3]
which avoids many of the drawbacks of most of the methods.

4.1 Kinds of Redundancies

There are four major types of redundancies that we shall mention here. The forms of redundancies
discussed are not independent of each other but overlap to some extent. There are some other forms
of redundancies too, but the ones we are going to discuss are the major ones.

In different types of data, some of the characters are used more frequently than others. For example,
in English text we see space and ’e’ more frequent than any other character and special characters
are used a lot less frequently. Generally speaking, all of the string combinations might not be used
in a specific data set, resulting in the possibility of reducing the number of bits per combination.
This kind of redundancy is due to character distribution.

The repetition of string patterns is another form of redundancy found in some of the cases. For
example, the sequence of blank spaces is very common in some kind of data files. In such cases the
message can usually be encoded more compactly rather than by repeating the string pattern.

In a certain type of data set, certain sequences of characters might appear very frequently. Some
pairs may be used with higher frequency than the individual probabilities of the letters in these
pairs would imply. Therefore, these pairs could be encoded using fewer bits than the combined
combinations of the two characters formed by joining together the individual combinations for the
two characters. Likewise, the unusual pairs, can be encoded using very long bit patterns to achieve
better utilization.In some data sets, certain strings or numbers consistently appear at a predictable
position. This is called Positional redundancy. It is a form of partial redundancy that can be
exploited in encoding.

4.2 Methods of Compression

Using the discussion on redundancy types as our basis, we shall discuss several practical compression
methods, and then choose one of them and use it for our simulation.

4.2.1 Huffman Encoding

This is the most popular compression method. It translates the fixed-size pieces of input data
into variable-length symbols. The standard Huffman encoding procedure prescribes a way to assign
codes to input symbols such that each code length in bits is approximately log,(.Symbol Probability).
Where symbol probability is the relative frequency of occurrence of a given symbol (expressed as a
probability). Huffman encoding has certain problems. The first problem is that the size of input
symbols is restricted by the size of the translation table. If a symbol is one eight-bit byte, then a
table of 256 entries is sufficient. However, such a table limits the degree of compression that can
be achieved. If the size of the input symbols is increased to two bytes each, the compression degree
would be increased. However, such encoding would require a table of 64K entries which may be a
high cost.

The second problem with Huffman encoding is the complexity of the decompression process. The
translation table is essentially a binary tree, in that, the interpretation of each code proceeds bit by

528 / SPIE Vol. 1388 Mobile Robots V (1990)

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 10/15/2013 Terms of Use: http://spiedl.org/terms

bit and a translation subtable is chosen depending on whether the bit is zero or one. This basically
means a logic decision on every bit which can create a system bottle neck.

The third problem with Huffman encoding is the need to know the frequency distribution of characters
in the input data which is not well known for all kinds of data. A common solution is to do two
passes on the data, one to find the frequency distribution ordering and the other is to to do the
encoding. This process may be done block wise to adapt to the changes in data. This is not very
efficient although it might be acceptable.

4.2.2 Run-length encoding

Repeated sequences of identical characters can be encoded as a count field along with the repeated
character. However, the count fields have to be distinguished from the normal character fields which
might have the same bit pattern as the count fields. A possible solution is to use a special character
to mark the count field. This might be suitable for ASCII text, but not when there are arbitrary bit
patterns such as in the case of binary integers. Typically, three characters are required to mark a
sequence of an identical character. So, this will not be useful for sequences of length three or less.

4.2.3 Programmed Compression

In formatted data files, several techniques are used to do compression. Unused blank or zero spaces
are eliminated by making fields variable in length and using an index structure with pointers to each
field position. Predicted fields are compactly encoded by a code table. Programmed compression
cannot effectively handle character distribution redundancy and is therefore a nice complement of
Huffman encoding. The programmed compression has several drawbacks. First it is usually done by
the application programmers adding to the software development cost. The type of decompression
used requires a knowledge of the record structure and the code tables. The choice of field sizes and
code tables may complicate or inhibit later changes to the data structure making the software more
expensive to maintain.

4.2.4 Adaptive Compression

The Lempel-Ziv [4,5] and related methods fall into this category. Fixed length codes are used for
variable-length strings such that the probability of occurrence of all selected strings is almost equal.
This implies that the strings comprising of more frequently occurring symbols will contain more
symbols than those strings having more of the infrequent symbols. This type of algorithm exploits
character frequency redundancy, character repetitions, and high-usage pattern redundancy although
it is usually not effective on positional redundancy. The algorithm is adaptive in the sense that it
starts with an empty translation table and builds the table as the compression proceeds. This type of
algorithm is a one pass procedure and usually requires no prior information of the type of data. Such
algorithm, gives poor compression results in the initial part of the data set; as a result the data set
should be long enough for the procedure to establish enough symbol frequency experience to achieve
a good compression degree over the whole data set. On the other hand, most finite implementations
of an adaptive algorithm loose the ability to adapt after certain length of the input which means
that if the input’s redundancy characteristics vary over its length, the compression degree declines
if the input length significantly exceeds the adaptive range of the compression implementation.

We have chosen a variation of the Lempel-Ziv procedure which is called LZW due to Welch [3]. This
method retains the adaptive characteristics of the Lempel-Ziv procedure but is distinguished by its

SPIE Vol. 1388 Mobile Robots V (1990} / 529

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 10/15/2013 Terms of Use: http://spiedl.or g/terms

very simple logic which yields relatively inexpensive implementations and a potential of very fast
execution.

4.3 The LZW Algorithm

The LZW algorithm is organized around a translation table, referred to here as a string table, that
maps strings of input characters into fixed length codes. The use of 12-bit codes is common. The
LZW table has the prefix property that if wK is a string in the table and w is a string and K is a
character, then w is also in the table. K is called the extension character on the prefix string w. The
string table may be initialized to contain all single-character strings.

The LZW table, at any time in the compression process, contains strings that have been encountered
previously in the message being compressed. In other words, it contains the running sample of strings
in the message, so the available strings reflect the statistics of the message. The strings added to the
table are determined by this parsing: each parsed input string extended by its next input character
forms a new string added to the string table. Each such string is assigned a unique identifier, namely
its code value. In precise terms, this is the algorithm :

Initialize table to contain single-character strings.
Read first input character = prefix string w.
Step: Read next input character K
If no such K (mput exhausted): code(w)=¢ output ;EXIT

If wK exists in string table: wkK = w; repeat step.
else wK not in string table: code(w)== output;

wK = string table;

K = w; repeat step.

The algorithm is quite simple and can have a very fast implementation. The main concern in the
implementation is storing the string table which can be very large. However, it can be made tractable
by representing each string by its prefix identifier and extension character. This will give a table of
fixed length entries.

The basic algorithm for decompression is as follows :

Decompression: Read first input code= CODE == OLDcode;
with CODE = code(K), K = output;
Next Code: Read next input code = CODE == INcode;
If no new code : EXIT, else:
Next Symbol: If CODE = code(wK): K = output;
code(w) == CODE;
Repeat Next Symbol
else if CODE = code(K)K = output;
OLDcode, K = string table;
INcode = OLDcode;
Repeat Next Code.

The decompressor logically uses the same string table as the compressor and similarly constructs it

as the message is translated. Each received code value is translated by way of the string table into

530 / SPIE Vol. 1388 Mobile Robots V (1990)

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 10/15/2013 Terms of Use: http://spiedl.or g/terms

a prefix string and extension character. The extension character is pulled off and the prefix string is
decomposed into its prefix and extension. This operation is recursive until the prefix string is a single
character, which completes decompression of that code. Each update to the string table is made for
each code received (except the first one). When a code has been translated , its final character is
used as the extension character, combined with the prior string, to add a new string to the string
table. This new string is assigned a unique code value, which is the same code that the compression
assigned to that string. In this way, the decompressor incrementally reconstructs the same string
table that the compressor used.

5 Comparing the Models

The goal of our mathematical formulations and modeling is to perform one of two basic tasks, the
first one is to decide whether to use compression or not given a certain set of fixed parameters { for
compression, decompression and the physical medium } , the other is to decide the threshold for a
specific varying parameter before which we should perform compression and after which we should
not perform compression.

Two independent situations can arise in our formulation, in the first one, we can consider the protocol
in which the communication to take place is a one of varying page length. In this case, the compression
is performed for one “chunk” of data at a time and is immediately sent after that. In the other case,
the protocol may have a fixed page size and thus the compression is performed for large files and the
compressed data is sent one page at a time. Thus comparing the two models for decision making
and optimizing parameters can be performed for each one of these situations separately. It should
also be noticed that there might exist hypothetical bounds and average values for the run times and
compression ratios for the compression and decompression algorithms.

5.1 Using a Varying-Length Page

The problem in this case is to either make a decision regarding compression or to optimize a pa-
rameter, the four different representations for the transmission time can each be used to formulate
and express the total cost incurred in the compression and uncompression modes. In the decision
problem, we choose the scheme to have the less cost. In the optimization problems we find the range
for a certain parameter such that, for example, compression is a better technique, by solving the
inequality.

Assuming that we use the LZW algorithm, characters are 8 bits each, the machine’s cycle rate is
w cycles per second, the data size to be compressed is M bits and the compression ratio is R. The
algorithm runtime can be formulated as :

M

8w
1.5+R‘i

The following inequality can be formed for the model using the data rate as the physical parameter,
for cost of the compressed mode to be less than the cost of the uncompressed mode .

AM M LM M L
R +—+X(+ R)s +

8 w
D P 1.5+1~vﬁ:‘i 1.5-?-1{-1

For the model using the baud rate

SPIE Vol. 1388 Mobile Robots V (1990) / 531

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 10/15/2013 Terms of Use: http://spiedl.or g/terms

1 1
M L M M M L
bl I+F+X(Bt s | STlog,1 TP
082 T5+R-T Ts+R-T 082

For the model using the band width

lli—M+£+X M + IIEM)(M +.£

For the model using the signal to noise ratio

KM L M LM M L
R = tp+tX (gw T st) < = t3
Blogy(1+10%) P ek Ts+i=r/ ~ Blogy(1+10%) P

5.2 Using a Fixed-Length Page

In this model we assume that the protocol has a fixed length page and that the compression and
decompression is done for a large chunk of data M, in this situation another parameter should be
taken into consideration, which is the page size m and the expression for the transmission time should
now include the number of compressed pages that are sent over the communication medium. Thus
the above inequalities can now be expressed as :

1 M 1
I (%+%)+X< M, =)S‘A—J(T—n'+£)
m 1.5+R-1 1.5+R-1 m

For the model using the baud rate

& M L M & M M L
R (—7—’3—+—)+X e s—(- +—)
m \blogyl = P 1.5+R-T 1.5+R-1 m

For the model using the band width

& M m L M A M M m L
B o (e) X
m (2Blog2l+P)+X et s | S T \2Bleg, 1 TP

For the model using the signal to noise ratio

M L M g M
R (= = + F +X 8w + lt&u <
m \ Blog,(1+ 1010) 15+R-1 T1T5+R-1

3=

m L
=t P
Blog,(1 + 1010)
6 The Experiment
In our experiment towards the goal of establishing a reasonable tool for the design engineer, we offer
the choice for either making a decision to use a compression/decompression scheme given a certain
situation, i.e, a fixed set of physical layer parameters and a certain size of a chunk of data, or choosing

to optimize { obtain the threshold of} a certain parameter, such that we can use compression for
all values of the parameter that are less than this threshold, as it gives a less total cost than the

532 / SPIE Vol. 1388 Mobile Robots V (1990)

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 10/15/2013 Terms of Use: http://spiedl.org/terms

technique that does not use compression. The user is given the choice of choosing any one of the
four different ways of modeling the cost function, to maximize the number of parameters that one
can deal with. Thresholds are found by solving the above inequalities for the parameters that are to
be optimized for minimizing the total communication cost.

The results of running the experiment are displayed both theoretically and realistically. In the
theoretic solution, the input file to be transmitted is assumed to be a plain text, thus assuming
no prior information about the kind of data that are transferred in the network, then, a more
realistic { either a decision or a value } solution is given by calculating the actual compression and
decompression runtimes by running the LZW algorithm on them and observing the times and the
compression ratio.

Our algorithm is run on a variety of data types, in the first two examples the algorithm is run on
image data. These image data are inherently different as the first one contains a lot of information
and details, however, the second is mainly a few number of dots in a planar surface, it is not surprising
then to know that the compression ratio in the second example turned to be equal to 48 !!, especially
when we remember the adaptive characteristics of the LZW algorithm. The compression ratio in
the first one was equal to 5. This fact contributed to the difference in the thresholds and decisions
between the “theoretic” and the “realistic” approaches to finding the required limits and decisions.
The following are snap shots of three different runs for the system, the first two are for the complex
image, the third is for the simple one :

>> project.e
Enter various input values prompted for.

Decision or Optimization? [d/o]:o

Desired Model?
[i=using data rate, 2=baud rate, 3=bandwidth, 4=using sig-noise ratio]:3

Data Size? 8389192

Cycle Rate? 14286000

Network/CPU time cost ratio? 5
Theoretical Compression Ratio? 1.8
Observed Compression Ratio? 5.156
Observed Compression Time? 1.3
Observed Decompression Time? 1.2
Levels of Discretization? 2

Theoretical Results: If band width < 1588559.073359 Hz then compress.
Simulation Results: If band width < 270484.731978 Hz then compress.

>>
>> project.e
Enter various input values prompted for.

Decision or Optimization? [d/o]:d

Desired Model?
[1=using data rate, 2=baud rate, 3=bandwidth, 4=using sig-noise ratio]:4

SPIE Vol. 1388 Mobile Robots V (1990) / 533

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 10/15/2013 Terms of Use: http://spiedl.or g/terms

Data Size? 8389192

Cycle Rate? 14286000

Network/CPU time cost ratio? 5
Theoretical Compression Ratio? 5
Observed Compression Ratio? 5.156
Observed Compression Time? 1.3
Observed Decompression Time? 1.2
Signal to Noise Ratio in decibels? 5§
Medium Bandwidth? 1000000

Theoretical Results: Compression would cost less.
Simulation Results: Compression would cost more.

>>
>> project.e
Enter various input values prompted for.

Decision or Optimization? [d/o]:o

Desired Model?
[1=using data rate, 2=baud rate, 3=bandwidth, 4=using sig-noise ratio]:1

Data Size? 1966640

Cycle Rate? 14286000

Network/CPU time cost ratio? 5
Theoretical Compression Ratio? 1.8
Observed Compression Ratio? 48.468
Observed Compression Time? 0.4
Observed Decompression Time? 0.2

Theoretical Results: If data rate < 3177118.146718 bps then compress.
Simulation Results: If data rate < 642021.316608 bps then compress.

>>
We then proceed in the experiment to try different kind of data, we try executable files and observe
the results of running our toolbox. The following is a sample run for the system on a file of executable

commands.

>> project.e
Enter various input values prompted for.

Decision or Optimization? [d/o]:d

Desired Model?
[1=using data rate, 2=baud rate, 3=bandwidth, 4=using sig-noise ratio]:4

Data Size? 745472
Cycle Rate? 14286000

534 / SPIE Vol. 1388 Mobile Robots V (1990)

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 10/15/2013 Terms of Use: http://spiedl.or g/terms

Network/CPU time cost ratio? §
Theoretical Compression Ratio? 1.8
Observed Compression Ratio? 1.526
Observed Compression Time? 0.5
Observed Decompression Time? 0.3
Signal to Noise Ratio in decibels? 30
Medium Bandwidth? 3000

Theoretical Results: Compression would cost more.
Simulation Results: Compression would cost more.

>>

It is noticed that for a “nice” collection of information, which includes a lot of repetitiveness, the
compression ratio is maximum, while it decreases for other types. The fact that there is sometimes a
discrepancy between the realistic and the theoretic values is because the theoretic approach assumes
a “perfect” media when it calculates the runtime for compression, however, this is not the case when
performing the actual compression in software on a down-to-earth Vax workstation. Also the wide
variations in the compression ratios should be taken into consideration.

7 Conclusions

We discussed the issue of efficient and adaptive transmission mechanisms over possible physical links
between the operator and the system. A tool was developed for making decisions regarding the
flow of control sequences and data from and to the operator. The decision of compressing data
and commands is discussed in details, a yes/no decision box and an optimizing tool for finding
the appropriate thresholds for a decision were implemented. Physical parameters are taken into
consideration while developing our decision system. Also, the compression parameters relationships
and different compression techniques suited for the task are developed, with an emphasis on adaptive
ones that accommodate various data and control patterns. Theoretical analysis is performed to
develop mathematical models for the optimization algorithm. Simulation models are also developed
for testing both the optimization and the decision tool box. Our system is tested through a series of
simulations and a comparison is performed against the theoretical results for some data and control
sequences.

References

[1] V. Cappellini, Data Compression and Error Control Techniques with Applications, 1985.
(2] W.K. Pratt, Image Transmission Techniques, 1979.

[3] T.A. Welch, “ A Technique for High Performance Data Compression”, IEEE Computer, June
1984, pp. 8-19.

[4] J. Ziv and A. Lempel, “A Universal Algorithm for Sequential Data Compression”, IEEE Trans.
Information Theory, Vol. IT-23, No.3, May 1977, pp. 337-343.

[5] J. Ziv and A. Lempel, “Compression of Individual Sequences via Variable-Rate Coding”, IEEE
Trans. Information Theory, Vol. IT-24, No.5, Sept. 1978, pp. 5306.

SPIE Vol. 1388 Mobile Robots V (1990) / 535

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 10/15/2013 Terms of Use: http://spiedl.org/terms

