UPE: Utah Prototyping Environment for Robot Manipulators

Mohamed Dekhil, Tarek M. Sobh, Thomas C. Henderson, and Robert Mecklenburg*

Department of Computer Science
University of Utah
Salt Lake City, Utah 84112

Abstract

Developing an environment that enables optimal and flexi-
ble design of robot manipulators using reconfigurable links,
Joints, actuators, and sensors is an essential step for efficient
robot design and prototyping. Such an environment should
have the right “mix” of software and hardware components
Sor designing the physical parts and the controllers, and for
the algorithmic control of the robot modules (kinematics, in-
verse kinematics, dynamics, trajectory planning, analog con-
trol and digital computer control). Specifying object-based
communications and catalog mechanisms between the soft-
ware modules, controllers, physical parts, CAD designs, and
actuator and sensor components is a necessary step in the
prototyping activities. In this paper, we propose a flexible
prototyping environment for robot manipulators with the re-
quired subsystems and interfaces between the different com-
ponents of this environment.

1 Introduction

Prototyping is an important activity in engineering. Proto-
type development is a good test for checking the viability of
a proposed system. Prototypes can also help in determining
system parameters, ranges, or in designing better systems.
The interaction between several modules (e.g., S/W, VLSI,
CAD, CAM, Robotics, and Control) illustrates an interdisci-
plinary prototyping environment that includes radically dif-
ferent types of information, combined in a coordinated way.

The goal of this research project is to build a framework
for optimal and flexible design of robot manipulators with
the necessary software and hardware systems and modules.
This framework is composed of several subsystems such as:
optimal design, simulation, control, monitoring, CAD/CAM
modeling, part ordering, and physical assembly and test-
ing. Each subsystem has its own structure, data represen-
tation, and reasoning strategy. On the other hand, much of
the information is shared among these subsystems. To main-
tain the consistency of the whole system, an interface layer
is proposed to facilitate the communication between these
subsystems, and set the protocols that enable the interac-

*This work was supported in part by DARPA grant NO0014-91-J-4123,
NSF grant CDA 9024721, and a University of Utah Research Committee
grant. All opinions, findings, conclusions or recommendations expressed in
this document are those of the author and do not necessarily reflect the views
of the sponsoring agencies.

IEEE International Conference
on Robotlcs and Automation
0-7803-1965-6/95 $4.00 ©1995 IEEE

tion between the subsystems to take place. Figure 1 shows
a schematic view of the proposed prototyping environment
with its subsystems and interface.

Optimal
Design
Simulation Hardware
Selection
CAD/CAM
Control] ' Modeling
Part
Monitoring Ordering

Assembl;
and Y

Testing

Figure 1: The prototyping environment.

2 Background

To integrate the work among different teams and sites work-
ing in such a large project, there must be some kind of syn-
chronization to facilitate the communication and coopera-
tion between them. A concurrent engineering infrastruc-
ture that encompasses multiple sites and subsystems, called
Palo Alto Collaborative Testbed (PACT), was proposed in
[2]. The issues discussed in that work were: cooperative de-
velopment of interfaces, protocols, and architecture, sharing
of knowledge among heterogeneous systems, and computer-
aided support for negotiation and decision-making.

An execution environment for heterogeneous systems
called “InterBase” was proposed in [1]. It integrates preex-
isting systems over a distributed, autonomous, and heteroge-
neous environment via a tool-based interface. In this envi-

— 794 —

ronment each system is associated with a Remote System In-
terface (RSI) that enables the transition from the local hetero-
geneity of each system to a uniform system-level interface.

Object orientation and its applications to integrate hetero-
geneous, autonomous, and distributed systems are discussed
in [7]. The argument in this work is that object-oriented dis-
tributed computing is a natural step forward from the client-
server systems of today. Automated, flexible and intelligent
manufacturing based on object-oriented design and analysis
techniques is discussed in [6], and a system for design, pro-
cess planning and inspection is presented.

A management system for the generation and control of
documentation flow throughout a whole manufacturing pro-
cess is presented in [S]. The method of quality assurance
is used to develop this system that covers cooperative work
between different departments for documentation manipula-
tion.

A computer-based architecture program called the Dis-
tributed and Integrated Environment for Computer-Aided
Engineering (Dice), which addresses the coordination and
communication problems in engineering, was developed at
the MIT Intelligent Engineering Systems Laboratory [8].

In the environment we are proposing, several subsystems
are communicating through a central interface layer (CI),
and each subsystem has a subsystem interface (SSI) respon-
sible for data transformation between the subsystem and the
CI. Adding new subsystemn can be achieved by writing an SSI
for this new subsystem, adding it to the list of the subsystems
in the CI, and no changes required to the other SSIs. Remov-
ing a subsystem only requires removing its name from the
subsystems list in the CI.

3 The Prototyping Environment

The proposed environment consists of several subsystems
each of which carry out certain tasks to build the prototype
robot. These subsystems share many parameters and infor-
mation. To maintain the integrity and consistency of the
whole system, a central interface (CI) is proposed with the
required rules and protocols for passing information. This in-
terface is the layer between the robot prototype and the sub-
systems, and it also serves as a communication channel be-
tween the different subsystems.

3.1 Overall Design

The Prototyping Environment (PE) consists of a central in-
terface (CI) and subsystem interfaces (SSI). The tasks of the
central interface are to:

¢ Maintain a global database of all the information needed
for the design process.

e Communicate with the subsystems to update any
changes in the system. This requires the central
interface to know which subsystems need to know
these changes and send messages to these subsystems
informing them of the required changes.

Reéceive messages and reports from the subsystems
when any changes are required, or when any action has
been taken (e.g., update complete).

Transfer data between the subsystems upon request.

Check constraints and apply some of the update rules.

o Maintain a design history containing the changes and
actions that have been taken during each design process
with date and time stamps.

o Deliver reports to the user with the current status and
any changes in the system.

The subsystem interfaces are the interface layers between
the CI and the subsystems. This makes the design more flex-
ible and enables us to change any of the subsystems without
much change in the CI — only the corresponding SSI need
to be changed. The role of the SSIs are:

e Report any changes to the CI.
¢ Receive messages from the CI with required updates.

o Perform the necessary updates in the actual files of the
subsystem.

¢ Send acknowledgments or error messages to the CI.

The assumption is that there is a user at each subsystem (by
a user here we mean one or more skilled persons who under-
stand this subsystem), and there is a user operating the central
interface as a general director and coordinator for the design
process. In other words, the CI is to assist in the coordina-
tion of the job and to help communicate with all subsystems.
Figure 2 shows an overall view of the suggested design.

In the first phase of implementing the PE, the users have
more work to do. The CI and SSIs maintain the information
routing between the subsystems by sending messages to the
corresponding user at each subsystem, then the action its¢lf
(e.g., update a file) is accomplished by the user. Later on, the
system will be automated to perform most of these actions it-
self and the user will simply be informed of the actions taken.

3.2 Communication Protocols

The main purpose of this environment is to keep all the sub-
systems informed of any changes in the design parameters.
Therefore, passing information between the subsystems is
the most important part of this environment. To be able to
control the information flow, some protocols were developed
to enable the communication between these subsystems in an
organized manner. In our design, all subsystems communi-
cate through the CI which is responsible for passing the in-
formation to the subsystems that need to know.

There are two types of events that can occur in this system:

1. Change reported from one of the subsystems.

2. Request for data from one subsystem to another.

— 795 —

Subsystem 1

Subsystem 2

Central Interface

(89)

SSI(3)

Subsystem 3

.ol Global Database [,

(@)

Subsystem 4

Figure 2: Overall design of the prototyping environment.

Figure 3 shows the protocol used for the first event repre-
sented by a finite state machine (FSM). The states of this
FSM are:

1.
2.

Steady state: Do nothing.

Change has been reported: send lock message to all sub-
systems. Apply relations and check constraints. If con-
straints are satisfied, go to state 3. If constraints are not
satisfied, report these to sender and go to steady state.

. Constraints are satisfied: Notify the subsystems with the

changes and wait for acknowledgments.

Acknowledgments received from all subsystems: Send
the final acknowledgment to the subsystems and go to
steady state.

. Acknowledgments not Ok: Send a “change-back” com-

mand to the subsystems and go to steady state.

Figure 4 shows the protocol for the second event. The
states in this FSM are:

1.
2.

Steady state: Do nothing.

Request for SS2 received from SS1. Send the request to
S$S2.

. Required data found at SS2. Send data to SS1 and go to

steady state.

. Required data not found at SS2. Send report to SS1 and

£0 to steady state.

— 796 —

Send Ack. to
subsystems Ack.

received

Change
reported

Constraints Ok

Constraints not

Negative Ack.

Figure 3: The change-parameter protocol.

Send data
Data found
at SS2

Figure 4: Data request protocol.

3.3 Prototyping Environment Database

A database for the system components and the design param-

eters is necessary to enable the CI to check the constraints, to

apply the update rules, to identify the subsystems that should

be informed when any change happens in the system, and to

maintain a design history and supply the required reports.
This database contains the following:

Robot configuration.

Design parameters.

Available platforms.

e Design constraints.

Subsystems information.

Update rules.

Now the problem is to maintain this database. One solu-
tion is to use a database management system (DBMS) and in-
tegrate it in the prototyping environment. This requires writ-
ing an interface to transform the data from and to this DBMS,
and this interface might be quite complicated. The other so-
lution is to write our own DBMS. This sounds difficult, but
we made it very simple since the amount of data we have is
limited and does not need sophisticated mechanisms to han-
dle it. A relational database model is used in our design,
and a user interface has been implemented to maintain this
database. For the current design, by making a one-to-one cor-
respondence between the classes and the files, reading and
writing a file can be accomplished by adding member func-
tions to each class. '

3.4 Constraints and Update Rules Compiler

A compiler is provided to generate C++ code for the con-
straints and the update rules. First, the syntax of the language
that is used to describe the constraints and the update rules is
described. Second, the generated code is determined. Using
a compiler instead of generic on-line evaluator for the con-
straints and the update rules has the following advantages:

o All constraints are saved in one text file (likewise the up-
date rules). This makes the data entry very easy. We can
add, update, and delete any constraint or update rule us-
ing any text editor.

o Complicated data structures are not required for evalu-
ation.

o The database is very simple, which facilitates maintain-
ing the design history.

¢ Format changes, or changes in the generated code re-
quire only changes to the compiler, and no changes in
the system are required.

On the other hand, it has the following disadvantages:

o The generated code has to be included in the system and
the whole system must be recompiled.

e A compiler needs to be implemented.

By analyzing the design constraints and the update rules,
we constructed a simple description of the language to be in-
put to the compiler. There are two options in this design,
either to have one compiler for both the constraints and the
rules, or to build two compilers, one for each. From the anal-
ysis of the constraints and the rules we found that there are
many similarities between them; thus building one compiler
for both is the logical option in this case.

A complete language definition in Backus Naur Form
(BNF) along with some examples can be found in [3].

3.5 The Generated Code

As mentioned before, this compiler generates C++ code
which is integrated with the CI system to check the constraint
or apply the update rule. Each variable in the input to the
compiler corresponds to one design parameter. For example,
“link1.dength” corresponds to the variable in the CI system
that represents the length of link number one in the robot con-
figuration. The code generator uses a lookup table to find the
corresponding variable name, and this table is part of the CI
database.

To update the constraints or the update rules the file con-
taining the old definition will be displayed and the user can
add, delete, or update any of the old definitions. Then the new
file will be compiled and integrated with the system.

4 Implementation

In the following subsections some implementation issues are
investigated, and the different components in our design and
how we implemented each of them are described.

4.1 The Central Interface

The central interface (CI) is the core program that handles
the communication between the subsystems, and maintains
a global database for the current design and a history of pre-
vious designs.

The CI is the implementation of the communication pro-
tocols described in Section 3.2. Some features and enhance-
ment to the protocols have been added to the CI. For exarn-
ple, when the CI receives a change message from an SSI, it
directly sends lock messages to the other subsystems so that
no more changes can be sent from any SSI until they receive
a steady message. This solves the concurrency problem if
more than one system send changes to the CI at the same
time. The first message received by the CI will be handled
and the others will be ignored. If an SSI receives a lock mes-
sage after it sent a change message, that means its message
was ignored. Another feature added to the CI is the ability to
detect if an SS1 is working or not by tracing the SSI_Start and
SS1_Stop messages.

— 797 —

4.2 The PE Control System

The CI as described above has no user interface. To be able
to control and manage the coordination between the subsys-
tems, the PE control system (PECS) was implemented with
some functionalities that enable the user to have some control
over the CI.

The PECS is built on top of a simple DBMS and a simple
compiler for the update rules and the constraints. The user
specifies the constraints and/or the update rules using a cer-
tain format (a language), then the compiler transforms this to
C code that is integrated with the system for constraint check-
ing, and for applying the update rules. The compiler consists
of two parts, a parser and a code generator. In the first phase
the complexity of the compiler was reduced by making the
user language less sophisticated.

4.3 Initial Implementation of the SSIs

In the first phase of implementation, the SSIs serve as a sim-
ple interface layer between the CI and the user at each sub-
system. They receive messages from the CI and display them
to the user who takes any necessary actions. They also report
any changes to the CI, and this is done by sending a message
to the CI with the changes.

In the next implementation phase, some of the actions will
be automated and the user at each subsystem will be notified
with any action taken. For example, updating a data file that
is used by the subsystem can be automatically done by the
SSI, given that it has the necessary information about the file
format and the location of the changed data.

4.4 The Central Interface Monitor

The central interface monitor (CIM) enables the user to mon-
itor the actions and the messages passing between the CI and
the SSIs with a graphical interface. This interface shows the
CI in the middle and the SSIs as small boxes surrounding the
CI. The CIM also has a small text window at the bottom. This
text window displays a text describing the current action. The
messages are represented by an arrow from the sender to the
receiver.

5 Results

One of the test cases for the prototyping environment is
shown in Figure 5. In this case, the optimal design subsystem
changed the length of one of the robot links and sent a data-
change message to the CI. The CI in turn sent lock messages
to all other subsystems notifying them that no changes will be
accepted until they receive a final acknowledgment message.
Then, the CI applied the relations and checked the design
constraints. In this test case the constraints were satisfied, so
the CI sent these changes to the subsystems that needed to be
notified. After that, the CI waited for acknowledgments from
the subsystems. In this case it received positive acknowledg-
ments from the specified subsystems. Finally, the CI updated

the database and sent final acknowledgment messages to all
subsystems. More results and test cases can be found in [4].

6 Conclusion

The design basis for building a prototyping environment for
robot manipulators was investigated and the design options
were explained. An initial implementation of a central in-
terface and some of the subsystem interfaces was done to
demonstrate the functionality of the proposed environment.
The design constraints and the update rules are expressed us-
ing simple syntax and are saved as part of the environment
database. A graphical user interface to control and monitor
the activities of the environment was implemented. A three-
link robot manipulator was built to explore the basis of build-
ing this environment. This prototype robot will be used as an
educational tool in control and robotics classes. We believe
this framework will facilitate and speed the design process of
robot manipulators.

References

[1] BUKHRES, O. A., CHEN, JI., DU, W., AND ELMA-
GARMID, A. K. Interbase: An execution environment
for heterogeneous software systems. [EEE Computer
Magazine (Aug. 1993), 57-69.

[2] CUTKOSKY, M. R., ENGELMORE, R. S., FIKES,R.E,,
GENESERETH, M. R., GRUBER, T. R., MARK, W. S,
TENENBAUM, J. M., AND WEBER, J. C. PACT: Anex-
periment in integrating concurrent enginecring systems.
IEEE Computer Magazine (Jan. 1993), 28-37.

[3] DEKHIL, M. Prototyping environment for robot manip-
ulators. Master’s thesis, University of Utah, Salt Lake
City, UT 84112, Mar. 1994.

[41 DEKHIL, M., SOBH, T. M., HENDERSON, T. C., AND
MECKLENBURG, R, Robotic prototyping environment
(progress report). Tech. Rep. UUCS-94-004, University
of Utah, Feb. 1994.

[5] DUHOVNIK, J., TAVCAR, J., AND KOPOREC, J. Project
manager with quality assurance. Computer-Aided De-
sign 25, 5 (May 1993), 311-319.

[6] MAREFAT, M., MALHORTA, S., AND KASHYAP, R. L.
Object-oriented intelligent computer-integrated design,
process planning, and inspection. IEEE Computer Mag-
azine Mar. 1903), 54-65.

[7] NicoL, J. R., WILKES, C. T., AND MANOLA, F. A,
Object orientation in heterogeneous distributed comput-
ing systems. IEEE Computer Magazine (June 1993), 57—
67.

[8] SRIRAM, D., AND LOGCHER, R. The MIT dice project.
IEEE Computer Magazine (Jan. 1993), 64-71.

— 798 —

m Central Interface Monitor @ Central Interface Monitor

Hardware Selection

E

o
|
e
!
|

I Change reported from Optimal Design subsystem r Send lock 1ge to the other subsy.]

3) Central Interface Monitor] @) Central Interface Monitor

Optimal Design

i

Hardware Selection

>

] |
i
0
k

Simulation

Apply relation and check constraints, I [Constraints safisfied ... yend changes to subsystems. J

-y

[) Central Interface Monitor 6) Central Interface Monitor

Optimal Design | Optinal Design l

[Receive positive acknowled; from sub |

- J S

Figure 5: CI test case, success case for data change.

— 799 —

