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Abstract. CAD/CAM (Computer Aided Design/Manufacturing) typically 
involves the design and manufacture of a mechanical part. The problem of 
reverse engineering is to take an existing mechanical part as the point of de­
parture and to produce a design, and perhaps a manufacturing process, for 
the part. We explore a new approach to reverse engineering and inspection 
applications. Discrete event dynamic systems (DEDS) are investigated as a 
new framework for guiding and controlling the active exploration and per­
ception of mechanical parts. The dynamic recursive context for finite state 
machines (DRFSM) is introduced as a new DEDS tool for utilizing the re­
cursive nature of the mechanical parts under consideration. The framework 
utilizes DRFSM DEDS for constructing a goal-directed autonomous observer 
for inspection and reverse engineering purposes. The developed techniques 
are then used to aid CAD pre-constructed models for inspection purposes 
and/or to develop models for subsequent manufacturing, thus, closing the 
sensing ---+ modeling ---+ manufacturing ---+ inspection loop. 

Keywords. Automation, Computer Vision, Control Systems, Discrete Event 
Dynamic Systems, Inspection, Intelligent Systems, Manufacturing, Reverse 
Engineering, Robotics. 

1 Introduction 

Developing frameworks for inspection and reverse engineering applications is 
an essential activity in many engineering disciplines. Usually, too much time 
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is spent in designing hardware and software environments, in order to be able 
to attack a specific problem. One of the purposes of this work is to provide 
a basis for solving a class of inspection and reverse engineering problems. 

CAD/CAM (Computer Aided Design, Manufacturing) typically involves 
the design and manufacture of a mechanical part. The problem of reverse 
engineering is to take an existing mechanical part as the point of departure 
and to inspect or produce a design, and perhaps a manufacturing process, 
for the part. The techniques that we explore can hopefully be used for a 
variety of applications. We use an observer agent to sense the current world 
environment and make some measurements, then supply relevant information 
to a control module that will be able to make some design choices that will 
later affect manufacturing and/or inspection activities. This involves both 
autonomous and semi-autonomous sensing. 

We use a recursive dynamic strategy for exploring machine parts. A dis­
crete event dynamic system (DEDS) [7,16,17,23,24,27] framework is designed. 
for modeling and structuring the sensing and control problems. The dynamic 
recursive context for finite state machines (DRFSM) is introduced as a new 
DEDS tool for utilizing the recursive nature of the mechanical parts under 
consideration. This paper describes what this means in more detail. . 

Next, we discuss the objectives and research questions. Then we discuss 
the methodology and proceed to describe some experiments and results. We 
conclude by detailing the current developments and the integration efforts. 

2 Objectives and Research Questions 

The objective of this research project is to explore the basis for a consistent 
software and hardware environment, and a flexible system that is capable of 
performing a variety of inspection and reverse engineering activities. In par­
ticular, we concentrate on the adaptive automatic extraction of some proper­
ties of the world to be sensed and on the subsequent use of the sensed data for 
producing reliable descriptions of the sensed environments for manufacturing 
and/or description refinement purposes. 

We use an observer agent with some sensing capabilities (vision and touch) 
to actively gather data (measurements) of mechanical parts. Geometric de­
scriptions of the objects under analysis are generated and expressed in terms 
of a Computer Aided Design system. The geometric design is then used to 
construct a prototype of the object. The manufactured prototype are then 
inspected and compared with the original object using the sensing interface 
and refinements made as necessary. 

DEDS can be simply described as: 

Dynamic systems (typically asynchronous) in which state tran­
sitions are triggered by discrete events in the system. 

It is possible to control and observe hybrid systems (systems that involve 
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continuous, discrete and symbolic parameters) under uncertainty using DEDS 
formulations [16,20,21,22,26,30]. 

The applications of this work are numerous: e.g., automatic inspection of 
mechanical or electronic components and reproduction of mechanical parts. 
Moreover, the experience gained in performing this research allows us to study 
the subdivision of the solution into reliable, reversible, and an easy-to-modify 
software and hardware environments. 

3 Methodology for Inspection and Reverse 
Engineering 

In this section we describe the solution methodology and discuss the com­
ponents separately. The control flow is described and the methods, specific 
equipment and procedures are also discussed in detail. 

We use a vision sensor (B/W CCD camera) and a coordinate measuring 
machine (CMM) with the necessary software interfaces to a SunSparcstation 
as the sensing devices. The object is to be inspected by the cooperation of 
the observer camera and the probing CMM. A DEDS is used as the high-level 
framework for exploring the mechanical part. A dynamic recursive context 
for finite state machines (DRFSM) is used to exploit the recursive nature of 
the parts under consideration. 

3.1 Discrete Event Dynamic Systems 

DEDS are usually modeled by finite state automata with partially observable 
events together with a mechanism for enabling and disabling a subset of state 
transitions [3,18,20,21,22,23,24]. We propose that this model is a suitable 
framework for many reverse engineering tasks. In particular, we use the 
model as a high-level structuring technique for our system. 

We advocate an approach in which a stabilizable semi-autonomous visual 
sensing interface would be capable of making decisions about the state of the 
observed machine part and the probe. Thus providing both symbolic and 
parametric descriptions to the reverse engineering and/or inspection control 
module. The DEDS-based active sensing interface will be discussed in the 
following section. 

3.1.1 Modeling and Constructing an Observer 

The tasks that the autonomous observer system executes can be modeled 
efficiently within a DEDS framework. We use the DEDS model as a high level 
structuring technique to preserve and make use of the information we know 
about the way in which a mechanical part should be explored. The state 
and event description is associated with different visual cues, for example: 
appearance of objects, specific 3-D movements and structures, interaction 
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between the touching probe and part, and occlusions. A DEDS observer 
serves as an intelligent sensing module that utilizes existing information about 
the tasks and the environment to make informed tracking and correction 
movements and autonomous decisions regarding the state of the system. 

In order to know the current state of the exploration process we need to 
observe the sequence of events occurring in the system and make decisions 
regarding the state of the automaton. State ambiguities are allowed to oc­
cur, however, they are required to be resolvable after a bounded interval of 
events. The goal will be to make the system a strongly output stabilizable 
one and/or construct an observer to satisfy specific task-oriented visual re­
quirements. Many 2-D visual cues for estimating 3-D world behavior can be 
used [26]. Examples include: image motion, shadows, color and boundary 
information. The uncertainty in the sensor acquisition procedure and in the 
image processing mechanisms should be taken into consideration to compute 
the world uncertainty. 

Foveal and peripheral vision strategies could be used for the autonomous 
"focusing" on relevant aspects of the scene. Pyramid vision approaches and 
logarithmic sensors could be used to reduce the dimensionality and compu­
tational complexity for the scene under consideration. 

3.1.2 Error States and Sequences 

We can utilize the observer framework for recognizing error states and se­
quences. The idea behind this recognition task is to be able to report on 
visually incorrect sequences. In particular, if there is a pre-determined ob­
server model of a particular inspection task under observation, then it would 
be useful to determine if something goes wrong with the exploration ac­
tions. The goal of this reporting procedure is to alert the an operator or 
autonomously supply feedback to the inspecting robot so that it could cor­
rect its actions. An example of errors in inspection is unexpected occlusions 
between the observer camera and the inspection environment, or probing 
the part in a manner that might break the probe. The correct sequences of 
automata state transitions can be formulated as the set of strings that are 
acceptable by the observer automaton. This set of strings represents precisely 
the language describing all possible visual task evolution steps. 

3.1.3 Hierarchical Representation 

Figure 1 shows a hierarchy of three submodels. Motives behind establish­
ing hierarchies in the DEDS modeling of different exploration tasks includes 
reducing the search space of the observer and exhibiting modularity in the 
controller design. This is done through the designer, who subdivides the 
task space of the exploring robot into separate submodels that are inherently 
independent. Key events cause the transfer of the observer control to new 
submodels within the hierarchical description. Transfer of control through 
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T3 

Figure 1: A Hierarchy of Tasks. 

the observer hierarchy of models allows coarse to fine shift of attention in 
recovering events and asserting state transitions. 

3.1.4 Mapping Module 

The object of having a mapping module is to dispense with the need for the 
manual design of DEDS automaton for various platform tasks. In particular, 
we would like to have an oft' line module which is to be supplied with some 
symbolic description of the task under observation and whose output would 
be the code for a DEDS automata that is to be executed as the observer 
agent. The problem reduces to figuring out what is an appropriate form 
for the task description. The error state paradigm motivated regarding this 
problem as the inverse problem of determining acceptable languages for a 
specific DEDS observer automaton. In particular, we suggest a skeleton for 
the mapping module that transform a collection of input strings into an 
automaton model. 

The idea is to supply the mapping module with a collection of strings that 
represents possible state transition sequences. The input highly depends on 
the task under observation, what is considered as relevant states and how 
coarse the automaton should be. The sequences are input by an operator. It 
should be obvious that the "Garbage-in-garbage-out" principle holds for the 
construction process; in particular, if the set of input strings is not represen­
tative of all possible scene evolutions, then the automaton would be a faulty 
one. The experience and knowledge that the operator have would influence 
the outcome of the resulting model. However, it should be noticed that the 
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level of experience needed for providing these sets of strings is much lower 
than the level of experience needed for a designer to actually construct a 
DEDS automaton manually. The description of the events that cause tran­
sitions between different symbols in the set of strings should be supplied to 
the module in the form of a list. 

As an illustrative example, suppose that the task under consideration is 
simple grasping of one object and that all we care to know is three configu­
rations; whether the hand is alone in the scene, whether there is an object 
in addition to the hand and whether enclosure has occurred. If we represent 
the configurations by three states h, ho and he, then the operator would have 
to supply the mapping module with a list of strings in a language, whose 
alphabet consists of those three symbols, and those strings should span the 
entire language, so that the resulting automaton would accept all possible 
configuration sequences. The mapping from a set of strings in a regular lan­
guage into a minimal equivalent automaton is a solved problem in automata 
theory: 

One possible language to describe this simple automaton is : 

L= hh·hoh:heh~ 

and a corresponding DEDS automaton is shown in Figure 2. 

Figure 2: An Automaton for Simple Grasping. 

The best-case scenario would have been for the operator to supply exactly 
the language L to the mapping module with the appropriate event definitions. 
However, it could be the case that the set of strings that the operator supplies 
do not represent the task language correctly, and in that case some learning 
techniques would have to be implemented which, in effect, augment the input 
set of strings into a language that satisfies some pre-determined criteria. For 
example, y. is substituted for any string of y's having a length greater than 
n, and so on. In that case the resulting automaton would be correct up to 
a certain degree, depending on the operator's experience and the correctness 
of the learning strategy. 

3.2 Sensing Strategy 

We use a B/W CCD camera and a coordinate measuring machine (CMM) 
to sense the mechanical part. A DRFSM implementation (see below) of a 
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discrete event dynamic system (DEDS) algorithm is used to facilitate the 
state recovery of the inspection process. DEDS are suitable for modeling 
robotic observers as they provide a means for tracking the continuous, discrete 
and symbolic aspects of the scene under consideration [3,20,21]. Thus the 
DEDS controller will be able to model and report the state evolution of the 
inspection process. 

In inspection, the DEDS guides the sensing machines to the parts of 
the objects where discrepancies occur between the real object (or a CAD 
model of it) and the recovered structure data points and/or parameters. The 
DEDS formulation also compensates for noise in the sensor readings (both 
ambiguities and uncertainties) using a probabilistic approach for computing 
the 3-D world parameters [26]. The recovered data from the sensing module is 
then used to drive the CAD module. The DEDS sensing agent is thus used to 
collect data of a passive element for designing structures; an exciting extension 
is to use a similar DEDS observer for moving agents and subsequently design 
behaviors through a learning stage. 

3.3 The Dynamic Recursive Context for Finite State 
Machines 

The Dynamic Recursive Context for Finite State Machines (DRFSM) is a 
new methodology to represent and implement multi-level recursive processes 
using systematic implementation techniques. By multi-level process we mean 
any processing operations that are done repetitively with different parame­
ters. DRFSM has proved to be a very efficient way to solve many complicated 
problems in the inspection paradigm using an easy notation and a straight 
forward implementation, especially for objects that have similar multi-level 
structures with different parameters. The main idea of the DRFSM is to reuse 
the conventional DEDS Finite State Machine for a new level after changing 
some of the transition parameters. After exploring this level, it will retake its 
old parameters and continue exploring the previous levels. Also, the imple­
mentation of such machines can be generated automatically by some mod­
ification to an existing reactive behavior design tool called GIJOE [4] that 
is capable of producing code from state machine descriptions (drawings) by 
adding a recursive representation to the conventional representation of finite 
state machines, and then generating the appropriate code for it. 

3.3.1 Definitions 

• Variable Transition Value: Any variable value that depends on the 
level of recursion . 

• Variable Transition Vector: The vector containing all variable tran­
sitions values, and is dynamically changed from level to level. 
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trans. 
VI V2 V3 V4 V5 Variables 

Levell 12 15 0,03 170 25 

Level 2 10 12 0.07 100 3S 

Level 3 6 8 0.15 50 40 

Figure 3: A Simple DRFSM 

• Recursive State: A state calling another state recursively, and this 
state is responsible for changing the variable transition vector to its 
new value according to the new level. 

• Dead-End State: A state that does not call any other state (no tran­
sition arrows come out of it). In DRFSM, when this state is reached, 
it means to go back to a previous level, or quit if it is the first level. 
This state is usually called the Error-trapping state. It is desirable to 
have several dead-end states to represent different types of errors that 
can happen in the system. 

3.3.2 DRFSM Representation 

We will use the same notation and terms of the ordinary FSM's, but some 
new notation to represent recursive states and variable transitions. First, 
we permit a new type of transition, as shown in Figure 3; (from state C to 
A), this is called the Recursive Transition (RT). A recursive transition arrow 
(RTA) from one state to another means that the transition from the first 
state to the second state is done by a recursive call to the second one after 
changing the Variable Transition Vector. Second, the transition condition 
from a state to another may contain variable parameters according to the 
current level. These variable parameters are distinguished from the constant 
parameters by the notation V(parameter name). All variable parameters of 
all state transitions constitute the Variable Transition Vector. Figure 4 is the 
equivalent FSM representation (or the flat representation) of the DRFSM 
shown in Figure 3, for three levels, and it illustrates the compactness and 
efficiency ofthe new notation for this type of process. In many cases, however, 
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Figure 4: Flat Representation of a Simple DRFSM 

it is impossible to build the equivalent FSM for a process because some values 
of its Variable Transition Vector are undefined until their corresponding level 
is reached. In these cases DRFSM's are the most appropriate way to deal 
with such applications. 

3.3.3 Implementation of DRFSM 

We intend to develop extensions to GIJOE [4] by adding some facilities to 
allow drawing of DRFSM's and to generate the appropriate C code with a 
recursive call to some states with variable transition conditions. The required 
modifications will be accomplished in two phases: 

• Drawing Phase. 

• Code Generation Phase. 

In the drawing phase a new arrow will be added (RTA) to represent a 
recursive call to any state. Also a notation for variable transition value will 
be added as shown in Figure 5. 

In the code generation phase, it is very important to preserve backward 
compatibility; fortunately, that is easy since we can check for the existence 
of RTA's. If no RTA is found, then it is a FSM and the code generated for 
this machine will be the same as before. On the other hand, if any RTA is 
found, then the following steps are required: 

• Collect all variable transitions to form the VTV. 
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VTV: (vI, v2, v3, v4, vs) 

f5 (v5) 

f1 (vI, v2) f2 (v3) 

f4 f3 (v4) 
recursive State 

Figure 5: New Notation for GIJOE 

• For each RTA in the figure build a user-defined function: Get_New_VTV 
to be filled by the user of GIJOE later, since this function is very 
application dependent, then its purpose is to get the values of the new 
vector to be used in the new level of recursion, and it will be called 
from the recursive state. 

• All states' functions will have a parameter which is the VTV. 

With these modifications backward compatibility is guaranteed and the 
implementation of any DRFSM is easily maintained. In Appendix A, a gen-
erated code for a DRFSM is shown. . 

3.3.4 How to use DRFSM ? 

To apply DRFSM for any problem the following steps are required: 

• Problem Analysis: Divide the problem into states, so that each state 
accomplishes a simple task. 

• Transition Conditions: Find the transition conditions between the dif­
ferent states. 

• Explore the repetitive part in the problem (recursive property) and 
specify the recursive states. Some problems however may not have this 
property. In those cases a FSM is a better solution. 

• VTV formation: If there are different transitions values for each level; 
these variables have to be defined. 

• Error trapping: Using robust analysis, a set of possible errors can be 
established; then one or more Dead-End state(s) are added. 
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Figure 6: Experimental Setup 

• DRFSM Design: Use GIJOE to draw the DRFSM and generate the 
corresponding C code . 

• Implementation: The code generated by GIJOE has to be filled out 
with the exact task of each state, the error handling routines should be 
written, and the required output has to be implemented as well . 

3.3.5 Applying DRFSM in Feature extraction 

An experiment was performed for inspecting a mechanical part using a cam­
era and the coordinate measuring machine. A predefined DRFSM state ma­
chine was used as the observer agent skeleton. The camera was placed on a 
stationary tripod at the base of the table so that the part was always in view. 
The probe could then extend into the field of view and come into contact with 
the part, as shown in Figure 6. 

Symbolic Representation of Features: For the above experiment we were 
concerned with open regions (0) and closed regions (C) . Any closed region 
may contain other features (the recursive property). Using parenthesis nota­
tion the syntax for representing features can be written as follow: 

< feature> :: C( < subfeature » I CO 
< subfeature > :: < term >, < subfeature > I < term> 
< term> :: 0 I < feature> 
For example, the symbolic notation of Figure 7 is 

C(O,C(O,C(),C(O)),C()) 
Figure 8 shows the graphical representation of this recursive structure 

which is a tree-like structure. Future modifications to DRFSM's includes 
allowing different functions for each level. 
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o 
Figure 7: An Example for a Recursive Object 

Figure 8: Graph for the Recursive Object 
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Figure 9: A DRFSM DEDS for Inspection 

Figure 9 shows a simple DRFSM DEDS machine for the exploration and 
inspection of mechanical parts, using both active vision and touch sensors. 

4 Visual Processing 

In order for the state machine to work, it must be aware of state changes in 
the system. As inspection takes place, the camera supplies images that are 
interpreted by a vision processor and used to drive the DRFSM. 

The vision processor provides two separate pieces of information that are 
required by the machine, intrinsic information about the part to be inspected, 
and state information as the inspection takes place. 

4.1 Extracting Feature Information 

The state machine requires information about the 2-D features on the part 
to be inspected. We divide 2-D features into two categories, open features 
and closed features. An open feature is considered to be an edge that, when 
followed, has no closure. Closed features have the property that, through an 
edge search, we are able to complete a closed loop. 

After digitizing an image of the part, edge responses are captured using 
the zero-crossing technique. Next, we search the edge responses for the fea­
ture type that they represent. Using a recursive search and the orientation 
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information given by the zero-crossing algorithm, we are able to label each 
edge as part of a closed or open feature. 

4.2 Deciding Feature Relationships 

Once we have found all of the features, we now search for the relationships 
between them. In the final representation of intrinsic information about 
the part, it is important to know which feature lies "within" another closed 
feature. 

Consider a scene with two features, a part with an external boundary and 
a single hole. We would like to represent this scene with the string: "C{ CO)" . 
This can be interpreted as, a closed region within another closed region. 

4.3 Visual Observation of States 

The vi~ual processor supplies the proper input signals to the DRFSM DEDS 
as the inspection takes place. These signals are dependent upon the state 
of the scene and are triggered by discrete events that are observed by the 
camera. 

The visual processor layer is made up of several filters that are applied to 
each image as it is captured. Several pieces of information must be known 
about the scene before a signal is produced. The location of the part, the 
location of the probe, the distance between them, the number of features on 
the part, and the distance to the closest feature. 

Once this information is known, we are able to supply the correct signal 
that will drive the DRFSM DEDS. The machine, will then switch states 
appropriately and wait for the next valid signal. This process is a recursive 
one, in that, the machine will be applied recursively to the closed features. 
As the probe enters a closed region, another machine will be activated, that 
will inspect the smaller closed region with the same strategy that was used 
on the enclosing region. 

4.3.1 Constructing the Recursive Relation 

One of the problems we have encountered was converting the set of relations 
between closed regions to the proposed syntax for describing objects. For 
example, the syntax of Figure 10 is: 

C{C{CO,C()),C()) 
and the relations generated by the image processing program are: 
Relation (1): B C A 
Relation (2): C C A 
Relation (3): DeB 
Relation (4): DCA 
Relation (5): E C B 
Relation (6): E C A 
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Figure 10: A Hierarchy Example 

Figure 11: The graph associated with the example 

These relations can be represented by a graph as shown in Figure 11. The 
problem is to convert this graph to an equivalent tree structure, which is the 
most convenient data structure to represent our syntax. Our method is to 
scan the relations, count the number of occurrences for each closed region 
name mentioned in the left side of the relations giving an array RANK(x), 
where x E {A,B,C, ... }, and select the relations (Xl C X2) that satisfy the 
following condition: 

RANK(X1) - RANK(X2) = 1 
This guarantees that no redundant relations will be selected. Applying 

this algorithm to the relations of Figure 10 we have, 
RANK (A) = OJ RANK(B) = Ij RANK(C) = Ij 
RANK(D) = 2j RANK(E) = 2 

The selected relations will be: 
B C Aj C C Aj D C Bj E C B 
Now arranging these relations to construct the syntax gives: 
A(B()) -> A(BO,C()) -> A(B(D()), C()) -> A(B(DO,E()),C()) 
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Figure 12: The tree associated with the example 

which is the required syntax. A tree representing this syntax is easily 
constructed and shown in Figure 12. The next step would be to insert the 
open regions, if any, and this is done by traversing the tree from the max­
imum depth and upwards. Any open region can be tested by checking any 
point in it and checking whether it lies within the maximum depth leaves 
of the closed region's tree hierarchy. (The test is easily done by extending 
a line and checking how many times it intersects a closed region, as in the 
test for closed regions enclosures.) Then the upper levels of the hierarchy are 
tested in ascending order till the root is reached or all open regions have been 
exhausted. Any open region found to be inside a closed one while traversing 
the tree is inserted in the tree as a child for that closed region. It should 
be noticed that this algorithm is not a general graph to tree conversion algo­
rithm; it only works on the specific kind of graphs that the image processing 
module recovers. That is, the conversion algorithm is tailored to the visual 
recursion paradigm. 

5 Experiments and Results 

An experiment was performed that integrated the visual system with the 
state machine. An appropriate DRFSM was generated by observing the part 
and generating the feature information. A mechanical part was put on a 
black velvet background on top of the coordinate measuring machine table 
to simplify the vision algorithms. The camera was placed on a stationary 
tripod at the base of the table so that the part was always in view. The 
probe could then extend into the field of view and come into contact with 
the part, as shown in Figure 6. 

Once the first level of the DRFSM was created, the experiment could 
proceed as follows. First, an image was captured from the camera. Next, 
the appropriate image processing takes place to find the position of the part, 
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the number of features observed (and the recursive string), and the location 
of the probe. A program using this information produces a state signal that 
is appropriate for the scene. The signal is read by the state machine and 
the next state is produced and reported. Each closed feature is treated as 
a recursive problem, as the probe enters a closed region, a new level of the 
DRFSM is generated with a new transition vector. This new level then drives 
the inspection for the current closed region. 

5.1 DRFSM DEDS example 

The specific dynamic recursive DEDS automaton generated for the test was 
a state machine G. Where X = {Initial,EOF,Error,A,B,C,D} and E = 
{1,2,3,4,5,6,7,8,9,eof}. The state transitions were controlled by the input sig­
nals supplied by intermediate vision programs. There are four stable states 
A,B,C, and D that describe the state of the probe and part in the scene. 
The three other states, Initial, Error, and EOF specify the actual state of the 
system in special cases. The states can be interpreted as: 

• Initial State: Waiting for first input signal 

• A: Part Alone in Scene 

• B: Probe and Part in Scene, probe is far from part. 

• C: Probe and Part in Scene, probe is close to part. 

• D: Probe touching or overlapping part. (recursive state) 

• Error: An invalid signal was received. 

• EOF: The EIKI. of File signal was received. 

5.2 Results 

Two typical sequences from a probing task were run. In the first sequence 
(Figure 14), the probe was introduced into the scene and moved in a legal 
way (accepted by stable states in the machine) towards the part until con­
tact was made. Next, the probe backed off and again approached until the 
probe and part overlapped. The automaton was forced into an error state by 
approaching from the other side of the part much too fast. The probe was 
not seen until it was too close to the object body. Because a transition from 
state A to C is invalid, an error state is reached. The part used was a simple 
one with only one hole, that is, it is represented by : C(C()). 

Another sequence was tried out (Figure 15), the part was more complex, 
the representation was recovered to be the following string: C( CO, C( CO), CO). 
The probe was introduced into the scene and moved legally towards the part. 
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Figure 13: State Machine Used in Test 

Next, the probe backed off and again approached until the probe and the 
part overlapped. The automaton was forced into an error state by the sud­
den disappearance of the probe after it was very close to the part. Because a 
transition from state C to state A is invalid, an error state is reported. Each 
image was displayed on a terminal window as it was captured along with the 
corresponding state of the automaton. The same state representations are 
displayed for different layers in the DRFSM (i.e. for different features). 

6 Integration and Current Developments 

The application environment we eventually intend to develop consists of three 
major working elements: the sensing, design, and manufacturing modules. 
The ultimate goal is to establish a computational framework that is capable of 
deriving designs for machine parts or objects, inspect and refine them, while 
creating a flexible and consistent engineering environment that is extensible. 
The control flow is from the sensing module to the design module and then to 
the manufacturing component. Feedback can be re-supplied to the sensing 
agent to inspect manufactured parts, compare them to the originals and 
continue the flow in the loop until a certain tolerance is met. The system 
is intended to be ultimately as autonomous as possible. We intend to study 
what parts of the system can be implemented in hardware. Some parts seem 
to be inherently suited to hardware, which will be discussed later, while 
some other parts of the system may be possible to put in hardware, but 
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Figure 14: Test Sequence (1) 
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Figure 15: Test Sequence (2) 
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experimentation will provide the basis for making that decision. Providing 
language interfaces between the different components in the inspection and 
reverse engineering control loop is an integral part of the project. 

6.1 Robotics and Sensing 

We shall be using a robot arm (a PUMA 560), a vision sensor (B/W CCD 
camera) mounted on the end effector and a coordinate measuring machine 
(CMM) with the necessary software interfaces to a Sun Sparcstation as the 
sensing devices. A DRFSM DEDS algorithm will be used to coordinate 
the movement of the robot sensor and the CMM. We have some experience 
in formulating observers using DEDS [26]. DEDS are suitable for modeling 
robotic observers as they provide a means for tracking the continuous, discrete 
and symbolic aspects of the scene under consideration [3,20,21]. Feedback 
will be provided to the robot arm, based on visual observations, so that the 
object(s) under consideration can be explored [8,14,26]. The DEDS control 
algorithm will also guide the CMM to the relevant parts of the objects that 
need to be explored in more detail (curves, holes, complex structures, etc). 
Thus the DEDS controller will be able to model, report, and guide the robot 
and the CMM to reposition intelligently in order to recover the structure and 
shape parameters. 

6.2 Computer Aided Design and Manufacturing 

The data and parameters derived from the sensing agent are then to be fed 
into the CAD system for designing the geometry of the partes) under in­
spection. We intend to use the (d. design environment [2,11,25,29] for that 
purpose. The goal is to provide automatic programming interfaces from the 
data obtained in the sensing module to the ad programming environment. 
The parametric and 3-D point descriptions are to be integrated to provide 
consistent and efficient surface descriptions for the CAD tool. For pure in­
spection purposes the computer aided geometric description of parts could be 
used as a driver for guiding both the robotic manipulator and the coordinate 
measuring machine for exploring the object and recognizing discrepancies 
between the real part and the model. 

The computer aided design parameters are then to be used for manufac­
turing the prototypes. Considerable effort has been made for automatically 
moving from a computer aided geometric model to a process plan for mak­
ing the parts on the appropriate NC machines and then to automatically 
generate the appropriate machine instructions [9,10,12]. We intend to use 
the Monarch VMC-45 milling machine as the manufacturing host. The CL1 
system will produce the NC code for manufacturipg the parts. 
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6.3 VLSI and Languages 

The software and hardware requirements of the environment are the backbone 
for this project. We intend to select parts of the system implementation 
and study the possibility of hardwiring them. There has been considerable 
effort and experience in VLSI chip design [6,13] and one of the sub-problems 
would be to study the need and efficiency of making customized chips. The 
DEDS model, as an automaton, is very suitable for Path Programmable 
Logic (PPL) implementation. A number of the visual sensing algorithms 
could be successfully implemented in PPL, saving considerable computing 
time. Integrated circuits for CAGD surface manipulation is an effort that is 
already underway. We intend to investigate a new area: the possibility of 
implementing the DEDS part of the system in integrated circuitry. 

There is a lot of interfacing involved in constructing the inspection and 
reverse engineering environments under consideration. Using multi-language 
object-based communication and control methodology between the three ma­
jor components (Sensing, CAD and CAM) is essential. We intend to use a 
common shared database for storing data about the geometric model and 
the rules governing the interaction of the different phases in the reproduction 
and inspection paradigms [19,28]. 

7 Conclusions 

We propose a new strategy for inspection and/or reverse engineering. We con­
centrate on the inspection of machine parts. We also describe a framework for 
constructing a full environment for generic inspection and reverse engineering. 
The problem is divided into sensing, design, and manufacturing components 
with an underlying software and hardware backbone. This project aims at 
developing automated control strategies for sensing the world and coordinat­
ing the activities between the different phases in the environment. We use a 
recursive DEDS DRFSM framework to construct an intelligent module for in­
spection and reverse engineering. The developed framework utilizes existing 
knowledge to formulate an adaptive and goal-directed strategy for exploring 
mechanical parts. 
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Appendix A 

/* Code Generated for a Simple DRFSM */ 

mainO 
{ 

} 

/* Some initializations */ 

VTV_ptr = get_VTV() 
drfsm (VTV_ptr) 

/* Finish Up */ 

/****************************************/ 

drfsm (VTV_ptr) 
{ 

/* do some initializations for each level */ 

/* do some cleaning */ 
} 

/****************************************/ 

state_A (VTV_ptr) 
{ 

} 

int finish = 0 ; 

/* do something */ 

while ( !finish ){ 
get-actionl (x) ; 

} 

if «x> VTV_ptr[l]) tt (x < VTV_ptr[2]»{ 
finish = 1 ; 
state_B (VTV_ptr) ; 

} 
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1****************************************1 

state_B (VTV_ptr) 
{ 

} 

int finish = 0 ; 

1* do something *1 

while ( !finish ){ 
get-action2 (c, w) 

} 

. if «c > 0.2) tt (c < 0.5){ 
finish = 1 ; 
state_A (VTV_ptr) 

} 

if (w > 120H 
·finish = 1 ; 
state_C (VTV_ptr) 

} 

1****************************************1 

state_C (VTV_ptr) 
{ 

int finish = 0 ; 

1* do something *1 

while ( !finish ){ 
get-action3 (L,z,y) 
if (z > 3*VTV_ptr[4]/sin(VTV_ptr[5]»{ 

finish = 1 ; 
state_B (VTV_ptr) ; 

} 

if (y > VTV_ptr[3]){ 
finish = 1 ; 
state_D (VTV_ptr) 

} 

if (L > 10H 
newVTV_ptr = get_VTV() ; 
drfsm (new_VTV_ptr) ; 
1* Free memory allocated to new_VTV *1 
1* Complete something *1 
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} 
} 

} 

1*****************************************1 

state_D (VTV_ptr) 
{ 

1* do something *1 
1* end of this level ... return to previous level *1 

} 

1******************************************1 


