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Abstract The process of deciding-on and purchasing the
right manipulator(s) for a predetermined task can often
turn to be very frustrating, especially when budget and
purchase timing are essential factors. The market tends to
get larger and variety driven and there is a choice for
almost any given price range, however, the price / size
ratio seems to remain constant. Larger scale manipulators
do not show the price amortization enjoyed by the
majority of computerized consumer hardware over the
past few years. In addition, the manufacturers for many
of these manipulators do not provide adequate pre-sales
supporting technical material (whether a result of lack of
standardized specifications or pure negligence), nor
effective warranties and service.

Primarily affected are higher level educational
institutions, where manipulators are likely to be exposed
to student projects that demand constant diversity and
various controlling software and hardware technique.
These manipulators are likely to become victims of
abusive usage and, in addition, the institutions need to
offer some of the highest standards of safety for the
students.

This paper presents a software simulation and control
package applied on a specific manipulator. The package
presents a significant tool in solving problems such as the
above mentioned ones. In addition, the software offers a
variety of implementation examples that can be directly
derived from the simulation package.

1. INTRODUCTION

The paper starts by presenting some of the aspects of the
manipulator used, then describes a fully functional
simulation and control software specifically designed to
address the problems mentioned in the abstract section.
The software package could be used for example from
student residences as a "virtua" manipulator so that
students can write their own simulation and control
software (project, homework assignment, etc) that could
be then tested "live" on the actual robot next class. Such
usage can aso significantly reduce the safety risks
involved with freshmen students attempting to control the
robot. The package can also be “worked-on” by the
students, for example adding vision processing or any
project specific duties, once the controlling and
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simulation parts are no longer of interest to develop. The
software could also act as a remote manipulation tool
from anywhere on the web, by having it connect to
another copy of the tool that resides as a net server on a
machine that is connected to the manipulator serialy.
The model can be extended to an unlimited set of
simulation packages that are all interconnected through
TCP/IP and ultimately connected to the actual robot.
Again, these are only some of the immediate applications
that although common, are problematic issues in most
engineering schools.

2. THE MANIPULATOR

We use a manipulator manufactured by Mitsubishi,
model RV-M1 (Movemaster EX) (figure 1).

Figure 1. Mitsubishi RV-M 1 (M ovemaster EX)

The manipulator is a general-purpose commercial robot
used in industrial applications (for example,
pharmaceutical / chemical industry to manipulate
substancesin agrid).

The arm offers 5 degrees of freedom (not including the
gripper). We will detail specifications as needed through
the paper, the reader can consult a distributor for a
detailed brochure (www.rixan.com for example). The
robot comes with all the necessary information to
program it from a serial port equipped computer or from
its "teaching" pad and has a software package (mainly
editor) that allows writing short program sets using the
robot's language set and have them stored in its
RAM/EPROM. The controller of the robot accepts direct



and inverse kinematics commands directly through the
serial port.

3. THESIMULATOR

3.1. Overview

The simulator was designed from its inception with the
student as a main beneficiary in mind. One of the goals
was to be able to reproduce as much as possible the
actual robot and its characteristics through the software
package, in such a way so that the software itself could
act as a "virtual" manipulator, almost replacing the need
for the actua manipulator. Such an approach should
allow the students to familiarize themselves much better
with the respective manipulator, and to face no surprises
when later connecting to the actual robot.

3.2. DESIGN CONSIDERATION

3.2. A. Interface, GUI

One of the commonly encountered problems in the
majority of the simulators available nowadays is their
graphic user interface layer. Students tend to get excited
by installing a certain simulator, but very often loose
their determination when they see a briefly sketched set
of links, lack of an intuitive GUIs or instant overloads of
variables and input coordinates. While certainly having a
remarkably vast level of theoretical complications and
combinations, our simulator maintains a very presentable
visual and physical implementation that tends to be the
actual final product.

We opted for using OpenGL and rendering the
manipulator closely to the actual model, so that it cannot
be confused with any other manipulator (figure 2).
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Figure 2. Simulated manipulator

3.2. B. Programming Language

A second aspect to consider is the programming language
to choose. Many students or engineers do not always
have the right aspiration towards advanced programming
techniques, and probably this should not be a
showstopper for arobotics enthusiast.

As aresult, we opted for using Visual Basic and making
the code as simple (though robust) as possible. With the
help of publicly available software tools [1], the OpenGL
power was integrated in Visual Basic. Having these two
entities as a starting base, the simulator code proves to be
simple; minor changes in the code can derive to custom
requirements. Visual Basic is aso a great medium for
describing robotics equations such as inverse kinematics /
dynamics, tragjectory calculations, as debugging of these
tends to be much simpler when compared to most of the
other languages. Of course there is a limitation drawback
that boosts C++ as a preferred choice at the professional
levels (fast synchronizations, advanced hardware control
at assembler level, etc), although the differences tend to
be diminished lately by technologies like Active X.

The following sections present each distinctive part of
the simulator

3.3. Front End (GUI)

When the simulator is being activated, the user has the
view from Figure 2, and dragging of the mouse over the
graphics scene will rotate the point of view around the
manipulator. The user has the choice to perform many
different view related operations through the Scene tab:
set the mouse to perform desired rotations, translations,
change the point of view or lock onto views such as
“top”, “side”, etc. The coordinates of the viewing point
are dynamically updated on the status bar of this view.
The orientation of the axes is aso displayed in the lower
left corner, and their coloration is being used consistently
throughout the simulation package to represent distinctly
each of the axes. In general, any of the options that are
being used have a direct effect on the CAD manipulator
displayed and even on the actual robot, if a connection is
active,

3.4. Kinematics

Although the MoveMaster EX manipulator accepts as
controlling parameters both direct and inverse kinematics
by design (thetas or X, Y, Z, roll, pitch, yaw), in the
simulator we decided to implement the direct and inverse
kinematics as well, giving the user the option to see
direct/inverse kinematics action on the CAD model itself,
without the need to be connected to the manipulator. The
inverse kinematics equations were solved through direct
geometric / trigonometric approaches [2], athough
similar equations would have been reached through the
usage of more traditiona DH (Denavit — Hartenberg)
tables [3]. A step-by-step demonstration of the equations
used are available online a www.bridgeport.edu/~risc,




and [4,5,6] show previous similar simulation work that
was successfully implemented.

The kinematics control module is available through the
“MoveMasterEX” tab (Figure 3).
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Figure 3. MoveM aster EX tab

Notice that although the Velocity Kinematics and
Acceleration Kinematics are provided as sub options
under the Kinematics options, they are not implemented
as the MoveMasterEX manipulator does not support
them (the manipulator only has alimited velocity control,
a choice of 5 or 6 preset values [7]). If it is desired to
adjust the software tool for a different manipulator, then
the developer will implement these as needed, following
closely the implementation of the existing kinematics
model.

The Position Kinematics interface (Figure 4) allows the
direct and inverse kinematics control of the robot.
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Figure 4. Position Kinematics I nterface

The activation of any of the direct kinematics scroll bars
will instantly update the inverse kinematics ones and vice
versa. The CAD manipulator itself moves accordingly
too. If the simulation package is connected to the actual
manipulator or a server version of the simulator, these
will move too (these features are described through the
following sections). If by adjusting any of the inverse
kinematics scrollbars the manipulator would risk a

singularity or an out-of-workspace position (solution),
the user will be warned and both the CAD robot and the
actual one (if connected) will not be updated until a new
correct (possible) position is reached.

Such an implementation alows a very safe control /
strategy for the existing manipulator and allows the user
to easily observe the actual workspace and its limitations.
The marginal values used for thetas and the inverse
kinematics were matched from the robot’s technical
manual [7]. Minor discrepancies were noticed, which are
typical and ignorable for this particular class of
manipulator.

3.5. Trajectories

Trajectory control / plotting is an essential step in any
moderated robot control project. The simulator
encapsulates a robust trajectory generation module, and
through the easy to use source code, the user should be
able to observe and modify as needed the
implementations. The trgjectory curves implemented in
this package are Lagrange, COONS, Hermite, B-Spline,
Bezier and Ferguson [8], which should be more than
sufficient for most of the applications (Figure 5).
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Figure5. Trajectory Settings

The user can set up and adjust trajectories without too
much experience with the simulator. A set of control
points needs to be defined (2 to 50), then a number of
intermediate points for the interpolations and the
trajectory will be dynamically adjusted in the scene and
can be applied to the actua manipulator through the
Apply option. Figures 6, 7, 8 show a few examples of
designed trajectories (Lagrange, Hermite and Bezier
respectively).
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Figure 6. Four points L agrangetrajectory curve
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Figure 7. Four pointsHermitetrajectory curve
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Figure 8. Four points Bezier trajectory curve

For choosing and adjusting the actual control points and
their exact order, the user will combine the Position
Kinematics panel described above with the Trajectory
Point Set option (Figure 9).
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Figure 9 Trajectory Point Settings

Once the arm is moved to the desired location and with
the desired pitch/yaw (using the Position Kinematics
Pad), the user can set this point, set the gripping forces
and navigate from a set point to another (using the
Trajectory Point Settings panel). Once a trgjectory is
being set to the desired parameters, it can be saved as a
file and reused. Although figure 9 displays options for
speed and acceleration at the respective point as well,
they are not implemented due to the limitations of the
robot. If the simulator package is to be adjusted for a
different manipulator, the developer will be able to
utilize the existing interface ands will probably opt for a
similar backend implementation as the one here. Notice
that the actual robot will move synchronously with the
users operations if it is connected to the simulator, and
throughout the steps necessary to set up a trgjectory the
CAD model presents continuous feedback to the user.

3.6. Other MoveM aster EX Settings

For optima results, the simulator alows for fine
adjustment of some of the manipulator’'s simulation
parameters (Fig 10), as follows:
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Figure 10. MoveM aster Settings

IK tolerance

Allows the user to adjust the values that determine the
precision of the inverse kinematics module. The user
needs to be careful with the values as they could cause
inverse kinematics replies that are not within the actual
workspace of the manipulator. The IK Velocity and IK
Acceleration Tolerances are not implemented due to the
limitations of this robot, athough are present if a
different robot will be used.

Home Position

The user can redefine the nesting position of the arm, so
when the simulator is connected to the actua robot, the
robot will move to the newly set nest position. Robot
Nest, will use the factory (or teaching pad) set nesting
position. Sym Default, will use the simulator’s default
nest position, which in this case coincides with the
factory default one. Sym Current, the current
simulator/CAD position will be used as nest position.



When Connecting

The user can also control the way in which the position
synchronization between the CAD model and actual
robot is done when the connection is made. Sym Gets
Robot Coords, will leave the manipulator at its current
position and adjust the CAD model coordinates to match
that, while Robot Gets Sym Coords will cause the
manipulator to move to the position current in the
simulator/CAD model.

3.7. Vision Features

To ease the development of vision processing algorithms,
the simulation tool allows the user to connect a camera to
the package and have frames or segquences of frames
available for processing. We have tested the simulator
with a USB camera model DVC323 by Kodak under
Microsoft Windows 2000, although any camera with a
valid VFW (Video for Windows) driver will work as
well. There are plenty of choices for controlling a digital
camera or camcorder from within a Visual Basic
application. For the visual support, we have arbitrarily
picked a publicly available OCX control (Xvideo2 by
www.cbcsolutions.com).

A more digtinct feature in the simulation package is the
ability to have the package run in server mode and have a
client session connect to it and retrieve for processing a
bitmap image of the actual “virtual” scene. For example a
user could decide to add a few objects to the scene
(Figure 11) of the server application, then have this
bitmap transmitted to the client session for actual vision
processing.
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Figure 11. Objects added to the scene

The client tool would normally not have these objects in
the scene, asit would be used as a smulator /control tool
on the images that arrive from the server, which in fact
acts as the virtual “rea” manipulator. The goa could be
to grab the virtual objects (for example), and the user
could also request different views of the server scene for
easier processing. Notice that this would not be possible
through an actual (physical) camera, as cameras cannot
be dynamically re-positioned unless a second or more
manipulators exist. The simulation tool can also be used
to send to any client level application the actual video

camera images that are grabbed as described in the
previous paragraphs.

As an example, a student could build a simulation and
control package with vision processing that would
actually perform on this simulator and not on an actual
robot, there would be no need to buy the manipulator, nor
the camera. If either of them or both are present, the
simulator can be used as well.

3.8. Connecting to the Actual Robot
The connection to this robot needs to be done through a
serial port. The process has been simplified and the
typical failures of adjusting the port settings have been
eliminated (Figure 12).
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Figure 12. MoveMaster Connection Settings

Although the default settings should only require the
change to the connected COM port, any other serial port
option can be adjusted and tested. Once the test is
successful the connection can be made and the actual
robot will be in synchronization with the CAD model.
The TEST choice will ensure that the robot is properly
connected and does feedback properly on the selected
port coordinates.

A second connection choice is available too, namely
TCP/IP. If another copy of this simulation tool is running
and is active as a server, its IP and Port need to be
specified and the connection can now be made to the
second simulator, which consequently can be connected
to the actual robot (please see next section for more
details), or to a chain of other servers and then to the
actual robot.

3.9. Networking the Simulator

The simulator can be switched into Server mode, which
will alow a client session of the simulator, usually
located elsewhere geographically, to connect through
TCP/IP and control the server side CAD model. The
connected client communicates with the server through
direct kinematics (thetas), although the TCP/IP port
protocol implementation is made easy enough to allow
any sort of communication, even direct passing of robot
specific commands to the serial port of the robot. Notice
that the server could be simultaneously connected to the
actual robot or be a client to another instance of the tool,
thus, a chain of simulation packages is possible (Figure
13).
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Figure 13 Networking M odel

Such a connection model would be very appropriate for a
class simulation for example, where each student’'s
workstation could be set to display the exact settings of
the client ssmulator (professor’s or project presenter’s
workstation) and this one further chained to the actual
robot as well. The TCP/IP networking also allows for
easier development of any other smulation software, by
simply running the server and the “to be designed” client
on the same machine asin Figure 14.

Any of the chained workstations can be controlled as
well through the position kinematics interface, in this
case overriding all the consequent workstations down on
the chain until the actual robot (if connected). The
workstations could also be just left to display the position
kinematics interface, which would adjust the scroll bars
automatically when a connected client would send thetas.
As an extension to the networked model and its server
side implementation, we have extended the package for
wireless control through a cell phone, a wireless (HDML
- Handheld Device Markup Language) server that allows
basic control of the manipulator.

A logging window alows the visuadization of the
protocol messages, while the CAD model and (if
connected) the actual manipulator will move to the
various cell phone sent commands.

On the cell phone, once the web browser is pointed to the
IP/port address mentioned on the top of the server
window, the user is sent a small HDML page that allows
him / her to activate any of the joints of the manipulator
by pressing a key from 0 to 9 (0,1: base angle increase /
decrease, 2-3: elbow angle, etc). Once the user selects
one of the options, the server intercepts the choice,
moves the robot joint and presents the same controlling
page for further movements. Various websites such as
[11] proved useful in building the necessary HDM. The
cell phone server features of the ssimulator were tested
with various cell phone models and various service
providers.

4. CONCLUSIONS

In this paper, we present a software model designed to
dleviate the need to have access to high cost
manipulators. The presented software package offers a
variety of usage possibilities, from a standalone
simulation package, a networked simulation package, to a
complete “virtual” manipulator package. The availability
of similar simulation tools for the mgjority of high cost
manipulators would solve the majority of the problems
involved with the acquisition of these manipulators. The
simulator could be used in educational ingtitutions, by
alowing the students to perform a large number of
projects involving a certain manipulator without actually
purchasing one, or purchasing a single or s limited
number of robots for final demonstration purposes only.
The simulator could, for example, be given to the student
for an extended project and have him / her continue the
work without needing access to the actual manipulator.
The tool can evidently be used very well as a remote
automation system, or as a distance learning method,
especiadly by setting up a networked chain for al the
students in a distance learning class, with one student or
instructor demonstrating on the actual robot and the rest
following the scenes closely on their workstations.
Currently we have successfully tested and used the
features detailed through this paper. The simulation
package can be found at www.bridgeport.edu/~risc. The
future work on this package will not be detailed here, as
the package itself was designed as only a basis for
various future applications.
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Figure 14. Server and Client applications running on the same workstation
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