
Case Studies in Web-Controlled Devices and Remote Manipulation

T. Sobh, R. Mihali, B. Ghimire, K. Vovk, G. Gosine, P. Batra, A. Singh, S. Pathak, T. Vitulskis and A. Rosca

School of Engineering and Design, 169 University Avenue, Bridgeport, CT 06601, U.S.A.
Phone: (203)576-4116, Fax: (203)576-4766

http://www.bridgeport.edu/~sobh

Abstract: The concept of distance learning has been more
and more articulated during the past few years and is
expected to shortly turn into a practical education system
within current high level learning institutions. The chances
are that distance learning would transparently extend
colleges and institutes of education, and could plausibly
overtake and turn into a preferred choice of higher
education, especially for adult and working students.
In a supportive effort towards faster distance learning
implementation and consideration, we are presenting
through this material a sequence of projects that have been
developed at University of Bridgeport and can serve very
well in the process of distance learning education ranging
from simple "hobby" style training to professional
guidance material.
The projects have an engineering / laboratory flavor, are
part of an ongoing work of the faculty and students of the
Computer Science and Engineering Department of the
university, and are being presented in an arbitrary order,
topics ranging from vision and sensing to engineering
design, scheduling, remote control and operation.

Introduction
In a supportive effort towards faster distance learning
implementation and consideration, we are presenting
through this material a sequence of projects that have been
developed and can serve very well in the process of
distance learning education ranging from simple "hobby"
style training to professional guidance material.
The projects have an engineering / laboratory flavor, are
part of an ongoing work of the faculty and students of the
Computer Science and Engineering Department of the
university, and are being presented in an arbitrary order,
topics ranging from vision and sensing to engineering
design, scheduling, remote control and operation. The
inclination is towards being able to set up physical labs
online allowing students to use equipment / machines
(microscopes, manipulators – for handling substances or
various objects part of experiments, pulleys etc), hence the
goal of creating tools to allow engineering lab based
courses to be offered in a distance learning manner.

I. Mobile Robot Controlled by a Phone
The project presents a complete, in depth, cost-effective
solution for controlling a robot through phone calls.
Various extension possibilities are being discussed as well

(instructing a robot for vacuum cleaning, changing
switches, moving objects, surveillance etc).
Mobile Robots have numerous applications: unmanned
exploration, land mine removal, energy plants and
manufacturing factories.
We introduce a cost-effective robot. With the introduction
of video cell phones it will be possible for the user to see
the robotic movement in real-time and possibly perform
educational exercises using a simple interface at a distance.
Examples include “calling” a robot on the way home from
work and have it do various jobs like vacuuming the home
and sprinkling the garden. This could also be done by
logging on to a web server via an internet connected device
and sending signals to the robot [1], or directly sending
specific commands to the robot through cellular phones to a
wireless (or cellular) server at home (with or without a web
connection) (figure 1).

Figure 1: An application of a Robot with a phonechip

We focus on communication with the robot. The main
objective was to make the robots user-friendlier and be able
to communicate with them as we do with other people. We
decided to design a simple prototype of a robot that can be
controlled via phone - Phonebot. We considered a design
based on a phone chip

Hardware/Software and Test Equipment Used
Hardware Requirements: Flex 10K70 Chipset; Talrik II
Robot (including the Servo motors and Sensors); TelePhone
Set; Teltone's M-8870-01 Chip; SPST 90-2323, 5V relay
switch from RadioShack
3.58MHz Crystal Oscillators (Part #); Variable Power
Supply; Resistors, Capacitors and Diodes
Software Requirements: Altera's MaxPlus II, OrCAD,
HTML, CGI/ASP, Java, Matlab
Test Equipment: Oscilloscope, Logic Analyzer,
Multimeters, Nerd-Kit

Implementation
A call is placed to the Phonebot using either Plain Old
Telephony System (POTS) or a Personal Communication
System (PCS), or by using the telephony server via Internet.
Once the Phonebot receives the ring, a ring detector circuit
detects it and the call is completed by establishing a
connection between the phone chip and the FPGA chip
(figure 2).
The project was implemented using a top-down process:
- sending a signal through the phone line: a) Ring Detect
and connect phone line; b) DTMF decoder ;
- robot control with the FPGA device: c) Clock Division
(VHDL program); d) Ring Detect (VHDL program); e)
Motor Control (VHDL program); f) Robot Control (VHDL
program)
The final part of the project involved assembling various
parts of Phonebot and combining the different VHDL
modules.

PHONEBOT

PHONE ROBOT

Ring
Detect
And Line
Connect

DTMF
DecoderPhone

line

 FPGA (FLEX 10K20/10K70)

Robot
Control

Motor /
Sensor
Control

Figure 2: PHONEBOT – Basic Block Diagram

a) Ring Detect and Phone Line Connection
When the phone rings, the telephone company is sending a
ringing signal, which is an AC waveform. The common
frequency used in the USA is 20 HZ and in Europe it is
typically 25 Hz and it can be any frequency between 15 and
68 Hz. Most of the world uses frequencies between 20 and
40 Hz. The voltage at the subscribers end depends upon the
loop length and number of ringers attached to the line; it
could be between 40 and 150 Volts. The telephone line has
only DC (-48V) and/or small signal AC (audio). In the
circuit shown in Figure 3, capacitor C1 blocks the DC and
the voltage divider circuit obtained from the R3 and R2
resistors prevent the low level AC from having any effect
on the circuit.

Figure 3: Phone detect circuit

Specifications
C1 = 1 uf, CR1, CR2, CR3 = 1N914, C2 = 10 uF, R1, R3 =
100K, R2 = 10K
When the telephone rings, it brings about 90V RMS of AC
at 20Hz. When the telephone rings, the capacitor C2 is
charged. Diodes CR1 and CR2 guarantee that the output
(ring detect logic) does not exceed the power supply levels
and prevent any damages to other circuits driven from its
output. Since C2 and R1 have the time constants of 1s, the
output goes low for 1second after the ring stops. This pulse
is to be detected and used for connecting the telephone
circuit by the FPGA chip [2].

b) DTMF Decoder
Dual Tone Multi Frequency (DTMF) signals are used for
speed dialing and replace the conventional rotary dialing
system. These signals correspond to the digits on the dial
pad of any modern touch-tone phone. Each of those touch-
tones is constructed with the combination of two different
frequencies. This information can be utilized to find out
which button was pressed on the keypad and can be used
for various applications. The construction of the signals
according to different frequencies is shown in table 1:

High Frequency Values (Hz)

1209 1336 1477 1633

697 1 2 3 A
770 4 5 6 B

852 7 8 9 C

Low
Frequency
Values (Hz)

941 * 0 # D
Table 1: Signals related to different frequencis

These frequencies can be decoded using precise filters and
then we can decode which digit was pressed depending
upon these decoded frequencies. We used the M-8870-01
DTMF decoder chip to decode this information. The chip
uses a series of low pass and high pass filters to decode the
frequencies. Then it uses a digital detection algorithm and a
code converter to provide its output in the form of four
binary output data [3]. This data is supplied to the FPGA
chip for further use.
FPGA Control
For the controller we used the Altera’s Flex 10K70 chip.
The FPGAs contain arrays of logic cells, and enable
designing real systems to operate at increasingly higher
frequencies [4]. They have the ability to increase
integration, to place more and more electronics in a chip
and use all available gates within the FPGA, thereby
providing cost-effective solutions. The most important
factor for selecting this chip is that we can program and
reprogram the device while it is in a system. This provides
us with a great flexibility for using the Phonebot. The
Phonebot can be programmed within a few minutes to do
many tasks. Once programmed the robot will have the
“intelligence” to complete the requested task.

c) Clock Division Module
This module divides the 25MHz clock of Altera’s
University Board into slower clocks so that we can provide
the precise timing for the servo-motors because these
motors work at pulses in the order of milliseconds. The
25MHz clock is divided into 1Mhz, 100Khz, 10KHz, 10Hz
and 1Hz.

d) Ring Detect Module
This module takes its input from the ring detector circuit
and the DTMF decoder, provides output to the relay for
closing or opening the telephone circuit. As soon as a ring
is detected this module provides a 0V signal to the relay
and thus closes the circuit. When it senses a DTMF code for
digit 0, it opens the switch again. We had a small problem
while disconnecting the phone. The FPGA device stored the
code for digit 0 even after it was disconnected and for the
same reason next time we dialed up, it would connect and
disconnect on its own. This problem was resolved by
resetting the signals in the FPGA device on the falling edge
of the SB signal (SB signal goes high when there is a valid
code detected by the DTMF decoder).

e) Motor Control Module
The Phonebot has two servo motors to aid its movement.
First we had to hack these motors to create a DC gearhead
motor. The information on hacking the servos was obtained
from Mekatronix manual for the Talrik II robot. The hacked
servos work on Pulse Width Modulation (PWM). This
module provides the robot with pulses at specific times. If
we provide a pulse for 1 to 1.5ms, then the motor spins in
one direction and if we provide a pulse for 1.5 to 2ms, then
the motor spins in another direction. The pulses have to be
issued in an interval of about 20ms. This module
implements the generation of this timing.

f) Robot Control Module
This module programs the movement of the robot according
to the detected DTMF signals. It determines the path of the
robot and provides a signal for the servo motor control
module controlling the direction and the duration of running
the motors. For example, if we press 7, it moves the robot
in forward direction for 4 seconds; if we press 8, the
Phonebot moves in reverse direction for 4 seconds; and if
we press #, Phonebot comes to a complete stop. We also
added few bump switches to the Phonebot. These bump
switches send a high signal to the FPGA when they are
bumped [5]. Depending upon which bumper detects switch
closures, the FPGA device determines where the collision
occurred and issues a signal to the Phonebot to change the
direction of its path.
The final task in the project involved assembling the
different modules together. We had to be make a common
ground for the FPGA device, the circuit we designed for the
ring detection and the DTMF decoder [6]. The Altera board
was not detecting the decoded signals produced by the
DTMF decoder until a common ground was implemented.
The main controller program was implemented in structural
format combining the various components.

There are several features that could be added to the
Phonebot. Instead of the DTMF decoder, a voice
encoder/decoder can be used. Similar to a DTMF decoder,
the voice decoder would recognize certain frequencies and
depending upon those frequencies, the Phonebot can be
programmed to do certain tasks. This feature could also be
used for security purposes. Using more sensors and a visual
feedback would make the Phonebot more animated and will
be able to carry out more tasks. Integrating with the Internet
is another possibility that would add more access to the
Phonebot. A movie showing the Phonebot can be seen at
http://www.bridgeport.edu/cse/projects/phonebot/index.htm
l, as well as the controlling software of the robot

II. Internet Based Software Library for the SIR-1 Serial
Port Controlled Robot

The idea of web based control has been always envision
from the first days of networked computing. Being able to
execute operations from remote locations [7], with only
feedback of some sort, it is an active and desired choice in
many fields, such as robotic manipulators. This project
presents a complete web based control solution for a
manipulator, thus completely exemplifying one of the tons
of possibilities that remote automation encompasses.
An adequate API for the control of the SIR-1 robot (figure
4) has been developed. Available functions include
direct/inverse kinematics computation, serial port
communication interfacing, and link speed control.
The API can support an indefinite number of port
connections and thus control a theoretically indefinite
number of SIR-1 robots [8]. For the purpose of this project,
two robots with their respective controllers have been used.
Due to the high availability of serial ports on standard PCs,
this API can be deployed virtually anywhere and in any
environment, including the Internet, for almost any
application.

Figure 4: The SIR-1 Robot
•
•
•

Programming Generalities
The SIR-1 controller accepts commands from the serial
interface as CRLF-terminated ASCII strings. Prior to

issuing any command, a handshaking sequence has to be
performed. Once the character ESC has been sent, the
controller will respond with an 8-bit integer. The respective
bits indicate the status of each link (1 for active and 0 for
inactive). This is the only status update the controller will
send throughout the process.
Commands are in the form
<command char> <steps for link 1>, <steps for link 2>, …
<steps for link 6>
For example, in order to move the first link 100 steps, the
following string would be sent to the serial port:
M 100, 0, 0, 0, 0, 0 <CR><LF>
In this case, the trailing zeros can be left out.
Programming the controller via the serial port is thus
reduced to assembling a command string in a buffer and
sending it to the port character by character.

Web Usable Enhancements Library Set
Steps-degrees conversion: In order to control link
movement by degrees rather than steps, a simple
proportional correspondence between the number of steps
each link can move and the angle it covers has been
implemented [9].
Inverse Kinematics: Inverse kinematics functionality has
been implemented. Link movement is no longer controlled
only by angle, but also by absolute rectangular coordinates.
Programming Platform: A Visual Basic port of the library
is implemented. This allows for web deployment and robot
control over the Internet.
Function Library Abstract: Below is a summary of all
functions present in the library.
int SIR1_Handshake();
Initiates communication with robot. This function must be
called before any other command can be issued.
int SIR1_MoveLink(link L, int degrees);
Moves one link a specified number of degrees. If L = G (the
gripper is moved), the integer degrees specifies millimeters
of gripper opening.
int SIR1_MoveRobot(int AlphaBase, int AlphaShoulder, int
AlphaElbow, int AlphaPitch, int AlphaRoll, int
PercentGripper);
Moves all links a specified number if degrees.
void SIR1_HomeRobot();
Sends robot to HOME position. No return value
int SIR1_GotoXYZ(int X, int Y, int Z, int PITCH, int ROLL);
Moves the center of the gripper fingers to coordinates X, Y,
Z, with a specified roll and pitch of the gripper segment.
void SIR1_SetSpeedLink(link L, SPEED S);
Sets the speed of a link to a specified value (valid values are
0 to 7, of type SPEED defined above).
void SIR1_SetSpeedLinks(SPEED B, SPEED S, SPEED E,
SPEED P, SPEED R, SPEED G);
Sets the speed of each link to a specified value (valid values
are 0 to 7, of type SPEED defined at the top of sir.h).
int SIR_SetSpeedRobot(SPEED S);
Sets the speeds of all links to the specified value.
void SIR1_Pause(int TIME);
Pauses robot for 1/100 * TIME seconds. No return value

int SIR1_LinkPosition(link L);
Returns the position of each link (in degrees) relative to the
absolute system of coordinates defined for the robot. For
the gripper the percentage of opening is returned.
void SIR1_SetPort(int port);
Sets the address of the port we are talking to
int SIR1_IsActive(link L);
Checks to see if link L is active
Although the SIR-1 is a relatively simple robot, it can
accomplish complex tasks, due to its high repeatability (0.6
mm according to the specifications). During tests, the robot
was able to pick up and deposit a 9V battery, back and
fourth, ten times in a row.
The project clearly demonstrates the endless possibilities of
using such a robot as SIR-1 for web/internet based remote
automation through the implemented API, from pressing
buttons, flipping switches or remotely controlling any other
similar interfaces, to distance learning applications.

III. Internet Based Computer Vision Framework for
Security, Surveillance and Tracking Applications

This project presents a possible framework to quickly
design and implement vision systems that perform useful
real-time tasks using only off-the-shelf hardware, typically
available through general consumer stores.

1) The Problem Domain
The general goal of any computer vision system is detection
and identification of object model in an input image or
stream of images [10]. Such general tasks are typically
difficult to achieve with satisfactory speed and accuracy.
Depending on the application, certain assumptions can be
made about input images. For example, these assumptions
could include: Lighting condition in input images is known
and/or constant; Object orientation in the input image is
known; It is known that objects are not rotated out of the
vision plane; It is known that objects are not rotated in the
vision plane; Object is rigid; Object has constant shape;
Object scale is known; Background of image scene is
known; Sequence of images is available; (And /or possibly
several others). Such assumptions make it possible to build
vision systems that operate in real time and give acceptable
accuracy [11].

2) Architecture
Each algorithm dealing with a well-defined and solvable
problem is implemented as a building block. The system
can be built out of blocks connected using a plain pipe
architecture where the output of a block is fed to the input
of other blocks. Each system would have image acquisition
and output analysis with vision processing implemented in
between. This allows for a quick system implementation,
without modifying underlying components. Components
can be enhanced or replaced without affecting other parts of
the system taken in consideration [12].

Generally each system would constitute of three large
components: Early processing, Feature extraction, Feature
matching
Early processing is the stage in which images are enhanced
without trying to interpret them. Components that can be
used in this stage include: Gaussian filters, Histogram
normalization, Color filtering
Feature extraction selects certain feature points in the
image that are relevant. Sample components within this
module includes: Edge detection, Line or ellipse detection,
Region growing, Region splitting, Minmax point extraction
Feature matching is the task of determining if model
features are present in the feature set extracted from the
image and how well they match.

3) Sample System Requirements
A system has to detect a face in the scene and follow it.
Scaling, rotation in the vision plane are allowed. Small to
medium variation in lighting is tolerated. Background is
arbitrary. Rotation out of the vision plane and significant
lighting variations are not allowed. The diagram of
consecutive steps can be formulated as follows:
Acquisition -> Color filtering -> Conversion to
Monochrome -> Gaussian blur -> Thresholding ->
MinMax feature extractor-> Heuristic significant feature
detection -> Feature matcher -> Match result
The steps from Color Filtering to Thresholding constitute
early vision processing. They only enhance an image for
later processing without extracting any higher-level feature
data.
The color filter removes regions that have colors considered
not possible in the model. For example, the sky and forest
background are removed in this step. Conversion to
monochrome makes the image suitable for processing with
other algorithms. Gaussian blur removes noise and many
small, insignificant image features. It significantly lessens
the number of features returned by the feature matcher.
Thresholding removes parts of the image that are too dark,
and therefore cannot contain objects for detection. Values
for color filter, threshold and Gaussian blur can be specified
at design time or extracted from model.
The last four steps constitute high-level vision processing.
Feature extractor scans the image and finds parts of the
image that are most significant for detection. In this
sample system MinMax search is chosen because of speed
and simplicity. Local minimum and maximum points of
image are selected as most important points and used in the
feature-matching algorithm. Applying a heuristic filter can
filter features that are not relevant for detection. Relevance
of a feature in this filter is defined as energy carried by the
min or max point. Energy is the summation of pixel values
that are affected by that minmax point. The feature matcher
performs optimized exhaustive search between features
detected in the image and in the model and assigns each
pair of combinations a match value. Matching is based on
evaluating angles between features, proportions of distances
and proportions of amplitudes. In this way, the matching
function remains effective if rotations in vision plane,
scaling and uniform lighting variations are present. The

combination with the highest match value is chosen as a
possible detection candidate. If match value is higher than
threshold value, detection is successful; otherwise, the
model is assumed not present in the image.

5) System Test Results
The original image (figure 5) has been passed through color
filtering, blurring, thresholding, minmax feature extraction
and heuristics to remove less significant features (figure 6).

Figure 5: Original Image

Figure 6: Heuristics to remove less significant features.

The importance of a feature is measured in terms of the
energy it carries. After filtering, the remaining features are
significant and the combinations of all of them can be
examined quickly. Detections happen in less than one
second using a Pentium PC and VGA resolution color
images when detecting one model. Lower resolution
images are suficcient for many applications, therefore the
system could be used in real time for detection of more than
one model [13].

6) Possible extensions
Modular design of framework allows easy modifications
and extensions to the system, such as using the system as a
web based robotic eye that can follow faces. Sample
modifications to improve quality of detection include
Fourier filtering and edge enhancement in early processing.
In late processing, different feature extractors can be used –
such as Hough transforms based methods, line following,
snakes, region splitting and region growing. The matcher
can be efficiently replaced with neural networks or heuristic
instead of exhaustive search. Background subtraction and
light elimination could also improve detection rates. In
order to further enhance functionality, the system could be
extended with multi model matching, which would make
possible the detection of objects rotated out of the vision
plane.

IV. Internet Controlled Robotic Vehicle with Video
Feedback

The Internet-Controlled Robot is a robust and repeatable
telerobotic vehicle that can be controlled from any Internet-
enabled computer. In supervised telerobotics, an operator at
a local site utilizes input devices and graphical visualization
tools to command execution of a task at a remote site using
a telerobotic vehicle.
The robot is controlled from a web page, where the operator
handles the robot by using a graphical user interface. The
operator can control each link of the robot separately, or
move the robot to a given point in 3-D space be inputting
the corresponding coordinates. The operator sees the
movement of the robot on the computer screen in real-time
via a live video camera broadcast. (figure 7)

Figure 7: Screenshot of the main interface page looks like
(http://216.87.101.211:8080/satcontrol/aspexec/commandrobot.
asp)

Such a telerobotic system can be used for controlling a
robot that operates in a hazardous or inaccessible
environment. The use of the Internet allows for true remote
operation. Practical applications of the system include
remote-controlled operations in radioactive or toxic areas,
which are dangerous for human beings, as well as remote
reconnaissance and sample collection.
The robot features base rotation, shoulder, and elbow and
wrist motion with a functional gripper along with two
additional servos to provide different steering. The
electronics and the servo controller are completely
assembled. A host PC is used to issue positioning
commands for the movement.
For the Internet control of the robot, we have created a
distributed high performance client/server architecture [14].
In this architecture the client provides an easy control
interface for the user and transmits control commands to the
server over TCP/IP, encoding the data before the
transmission. The system architecture is based on the thin
client model where the client performs only data validation
and data transmission routines. The server receives and
decodes control commands from the client. Once the
transmitted command has been decoded, the server then
performs inverse kinematics calculations on the data. This
is necessary since the user inputs values of x, y, z
coordinates via the client and they have to be transformed

into angular values that the robot’s micro-controller can
understand. The server then sends robot control signals
over the RS-232 serial port to the robot’s built-in micro-
controller, which performs the required action as long as the
requested position has been validated and confirmed to be
within the robot’s workspace. The user receives nearly
instantaneous visual feedback from a video camera that is
focused on the robot. The video signal from comes from a
CCD Camera connected to the server via a Universal Serial
Bus interface and has a resolution of 640 x 480 pixels. The
signal is converted into streaming RealVideo format using
RealProducer software, encoded at bitrate of 150 Kbps and
streamed to the client real video player.
Telerobots have the benefit of human cognitive and
perceptual abilities. Since human beings operate them, they
can perform more efficiently in unfamiliar and dynamic
environments. Telerobots such as the Internet-Controlled
Robot can be thought of as a robotic device that
synergistically combines human being and machine, and
such systems will undoubtedly have a great contribution
towards the progress of humanity in the future.

V. WWW gateway for Mitsubishi MoveMaster-EX
robot

1) Objective
The primary objective of this project was to create a www-
interface to the Mitsubishi MoveMaster-EX robot (figure7,
upper right corner) thus allowing a user to connect to the
robot and control it from a workstation elsewhere without
the need to download and install any special software.

2) Requirements
The following hardware and software was used for
implementation:
- IBM-compatible PC
- Windows NT server 4.0 (Operating System)
- Internet Information Server 4.0 (Web Server)
- RS232 Serial port interface and cable (to connect to robot)
- Active Server Pages (enabled in IIS)
- The aspexec.dll component
- Visual Basic (to code the serial port app)

Brief: The objective was accomplished by setting up a
web-server on the PC connected directly to the robot
(through the RS232 interface) [15]. Users connecting to the
web-server were able to send commands to the robot by
using the ASPExec component that the Active Server Pages
used to execute writetoport.exe. This executable
communicates with the robot by sending commands
through the serial port interface. Since the MoveMaster EX
allows direct and inverse kinematics control directly
through the serial port, there was no need to work on any of
the kinematics equations. For example the robot can
tolerate through the serial port a string such as “MV
100,30,0,40,50,0,-3”, where the first 5 values represent the
angles in degrees for each of the joints and the last two
values represent the pitch and yaw of the end effector. (note

that the Mitsubishi Movemaster does not provide dynamics
control, providing only a set of fixed values for speed and
no direct torque/actuators control).
The ASPExec component
Description: ASPExec allows the execution of DOS and
Windows applications through ASP (commandrobot.asp
executes an executable called writetoport.exe which sends
the appropriate command to the robot through the RS-232
interface). The following functionality is available through
ASPExec
property Application: Set the path (optional) and exe/com
filename
property Parameters: Set the app parameters
property TimeOut: Set the timeout to wait (milliseconds).
Used only for ExecuteDosApp and
ExecuteWinAppAndWait
property ShowWindow: Set whether the executing app is
visible or not. Used only for ExecuteWinAppAndWait and
ExecuteWinApp
ExecuteDosApp: Executes the specified app as a DOS app
and returns stdio as string
ExecuteWinAppAndWait: Execute the specified app as a
Windows app and wait for the specified timeout if exec is
successful
ExecuteWinApp: Execute the specified app as a Windows
app and return result code immediately
Installation: To use this ASP component move the DLL
into a subdirectory (such as \winnt\system32 for NT or
\windows\system for Win95/98) and type:
regsvr32 aspexec.dll
Through the software interface, the user can type any of the
commands that the robot was designed to accept through
the serial port, given that he is aware of their correct syntax
(robot’s user manual recommended). Simple commands
such as GC, GO, NT, MO (specified on the interface page),
are easy enough to use and assure a predictable positioning
of the manipulator once the positions have been defined,
but in case the user would like to experiment with the
hundreds of possible serial port commands, might want to
ensure a free of obstacles setup or to use the interface in
connection with video feedback.

VI. Remotely controlled Monitoring Vehicle

The objective was to come up with a prototype for a low-
cost monitoring vehicle that can be controlled from a
remote location providing visual feedback to the remote
operator A small-scale prototype of the described product
can demonstrate the low cost and ease of setting up a device
with an enormous number of potential applications
including security surveillance, child monitoring, hostile
territory exploration and even as a toy.
Hardware used:
- PCs (IBM compatible)
- Mitsubishi Movemaster EX robot
- Generic RC car
- Radio Frequency (RF) transmitter
- Cables and connectors

- Controller box for Mistubishi Movemaster EX
- Wireless camera (for visual feedback)
Software Used:
- Operating Systems (Windows NT, Linux)
- Programming Languages (C++, Java, VB)

Description
The two major issues to be considered:
- Issuing commands to the server from a remote machine
- Interpreting these commands and sending the appropriate
signal to the car through the RF chip

Issuing Commands to the server from a remote machine
We wrote a JAVA RMI-based server to accept a maximum
of ten connections from the client software. This design
also allows IP screening and similar security features. The
server also has direct access to the local machine's serial
port thus avoiding the need to write a separate DLL that
would have been a security hole by itself.

Interpreting the commands and sending the appropriate
signal to the car through the RF chip
The major issues at this point involved deciphering the
commands and having the RF chip transmit the appropriate
signals. To resolve this issue, we needed an FPGA
controller that would send a unique signal to the RF chip
depending on the signal it received from the serial port.
This approach was the most efficient but involved an
expensive FPGA chip and expensive software, which was
unavailable to us at development time. The alternative
solution was to use a robot to decipher the signals from the
server and manually manipulating buttons on the RF chip to
send one of the four signals (back, forward, left, right) to
the vehicle. The controller box for the Movemaster-EX
robot accepts commands as strings from a PC's serial port
(RS-232). Since our client already had this capability we
simply programmed the robot to teach it certain positions
and send commands to move to these positions in order to
manipulate the controls on the RF-chip.
Potential applications of our web-based system include:
- Security surveillance vehicle
- Exploration of hazardous environments
- Remote transportation of objects
- Support for disabled individuals

VII. Internet Controlled Satellite Transponder (using a
remotely controlled robotic manipulator)

1) Objective
To be able to control a satellite transponder from a remote
location by using a robotic manipulator to mechanically
change controls on the receiver or an UHF/infrared remote
control of the receiver.
The reasons a robot was used to mechanically use the
controller unit instead of hard-wiring the controller unit (or
the UHF remote control) to the server were: (1) The process
of hard-wiring can permanently damage the expensive
controller unit and subsequently render the transponder
useless [16,17]; (2) The robot can be easily reprogrammed

to adapt to different controller equipment, such as working
with a remote controller.
To establish communication between the remote client and
the robot via the server and enable the robot to carry out
desired commands without exceeding its limited workspace
or without running into obstacles, the following tasks need
to be implemented:
- Interfacing between robot and server (RS-232)
- Interfacing between receiver and server
- Interfacing between server and internet
- Teaching the robot (trajectory planning and generation)
A flowchart of the proposed system is shown in figure 8.

REMOTE
PC

SATELLITE
TRANSPONDER

RECEIVER

Remote
Control

 SERVER

Robotic
Manipulator

56�����

9LGHR
,QWHUIDFH

INTERNET

Figure 8: System Schematics

The interfacing between the robot and the server is carried
out via the RS-232 serial port. The robot’s controller box
simply receives commands as ASCII strings through the
RS-232 connection. An important issue to notice is the one-
way communication(i.e. once the computer issues
commands to the robot the controller does not send back
any signal to indicate the execution status of a command)
[18]. To overcome this it is important that a flawless
trajectory be planned during initialization of the robot,
implemented so that obstacles do not pose a problem.
Sample commands that can be issued to the robot: GC:
Closes the gripper, GO: Opens the gripper, NT: Nest the
robot

The interfacing between the receiver and the server is done
through a special interface card that takes the analog feed
from the transponder’s receiver and converts it into a digital
format ready to be broadcast over the Internet. The PC card
receives a feed through a standard coaxial cable. The
transponder can point at different ‘look-angles’ and at each
look-angle it can receive feeds at numerous frequencies.
The interfacing between the server and the Internet is done
through a simple secure web server to carry HTTP requests
from clients. It is important to ensure that only one
individual is controlling the robot at the same time. The
robot should also be nested every time, so that the software
is aware of its exact coordinates. Initialization also involves
defining key positions in the robot’s workspace and
defining trajectories that the robot should travel along.
Lastly, the robot must be ‘taught’ about its surroundings
and the environment that it will be operating in. This can be

done by fixing the position of the remote control unit and
defining its position relative to that of the robot. This allows
the robot to ‘know’ where the controller unit is and where
particular controls on the unit are.

2) Constraints and limitations:
- Limited set of commands that the robot’s controller box
can understand
- One-way communication between the server and the
robot’s controller
- The web server’s clients have no access to the serial port,
which is the only way of talking to the robot
- Time constraints
- Compatibility issues force use of a certain operating
system
How were the above limitations overcome to achieve the
objective?
The following tasks had to be carried out:
-

 Configure the server-to-server HTTP requests
- Write software allowing HTTP clients to issue commands
to the robot via the RS-232 port
- Write software to initialize the robot and define the work
area
Server configuration was not complicated, resulting in
setting up a Windows NT server with IIS, for processing
requests and enabling security authentication and control.
An ActiveX control needed to be written to allow Active
Server Pages to run executables on the server itself.
An executable ‘writetoport.exe’ did the simple task of
taking command-line arguments and sending these
arguments to the robot as commands via the serial port. The
application was written using Visual Basic.

3) Robot initialization
As mentioned previously, robot-initialization is vital to
ensure error-free operation, especially since the robot’s
controller unit sends back no signals to the server itself. The
position of the remote control needs to be fixed and
positions within the robot’s work area need to be defined.
There are two basic types of movements: Point to Point
(PTP) movement, XYZ movement
PTP movement involves specifying the joint variables (the
joint angles in this case) and changing them according to
the desired position of the robot.
XYZ movement involves moving the end-effector in an X,
Y, or Z plane. The joint variables are calculated based upon
position and desired motion and accordingly changed and
recalculated at every point during the trajectory [19].
XYZ movement is much slower and inaccurate than PTP
movement since the robot needs to perform repeated
calculations to determine the desired position. Hence PTP
movement was used to minimize error between the desired
trajectory and the actual trajectory. In order to use PTP
movement the trajectories need to be well-defined; each of
the joint angles need to be specified and effected
simultaneously to allow smooth trajectories.

4) Advantages and potential uses:
- Remote satellite feed for Internet users
- Remote communication
- Distance learning

5) Conclusion
- Robot was set up in the actual work environment
- Communications were established
- Rigorous testing to avoid unnecessary damage

The project demonstrates the synergy created by combining
robotic and computing power. On a larger scale this concept
can be ported to many more pragmatic applications using
robots.

Bibliography
[1] Tanenbaum, Andrew S. Computer Networks, New
Jersey, Prentice Hall.
[2] Meyers, Robert A. Encyclopedia of
Telecommunications, Academic Press Inc.
[3] Skahill, Kevin. VHDL for Programmable Logic,
Addition-Wesley, 1996.
[4] Yalamanchili, Sudhakar. VHDL Starter’s Guide,
Prentice Hall, 1998.
[5] Doty, Keith L. TALRIKII Assembly Manual,
MekatronixTM, 1999.
[6] Internet: ftp://ftp.teltone.com/pub/8870.pdf
[7] Ferrell W. R., Sheridan T. B.; Supervisory control of
remote manipulation; IEEE Spectrum, October; 81-88;
1967
[8] Rastogi A., Milgram P., Drascic D., and Grodski J. J.
[1993] Virtual Telerobotic Control Proceedings of the
Knowledge-Based Systems & Robotics Workshop, Nov.
14-17, 1993; 261-269
[9] Rastogi A. [1995] Design of an interface for telerobotic
in unstructured environments using augmented reality,
M.A.Sc. Thesis, Department of Industrial Engineering,
University of Toronto.
[10] A. Kosaka, M. Meng, and A. C. Kak, Vision-guided
mobile robot navigation using retroactive updating of
position uncertainty,’ Proceedings of 1993 IEEE
International Conference on Robotics and Automation,
Vol.2, pp.1-7, 1993.
[11] A. Kosaka and A. C. Kak, Fast vision-guided mobile
robot navigation using model-based reasoning and
prediction of uncertainties,’ CVGIP--Image Understanding,
Vol. 56, No. 3, November, pp.271-329, 1992.
[12] A. C. Kak, K. M. Andress, C. Lopez-Abadia, M.S.
Carroll, and J. L. Lewis, Hierarchical evidence
accumulation in the PSEIKI system and experiments in
model-driven mobile robot navigation, in Uncertainty in
Artificial Intelligence (M. Henrion, R. Shachter, L. N.
Kanal, and J. Lemmer, Eds), pp.353-369, Elsevier, North-
Holland, 1990.
[13] P. Isto, Path Planning by Multiheuristic Search via
Subgoals, Proceedings of the 27th International Symposium
on Industrial Robots, CEU, Milan, 1996, 712-726.

[14] D. Gillet, G. F. Franklin, R. Longchamp, and D.
Bonvin, "Introduction to Automatic Control via an
Integrated Instruction Approach", The 3rd IFAC
Symposium on Advances in Control Education, Tokyo,
Japan, August 1994.
 [15] Wilhelms, J., Toward Automatic Motion Control,
IEEE Computer Graphics and Applications. V7 #4, April
1987, pp. 11-22.
[16] A. Li and G. Crebbin. Octree encoding of objects from
range images. Pattern Recognition, 27(5):727-739, May
1994.
[17] W.E. Lorensen and H. E. Cline. Marching cubes: A
high resolution 3D surface construction algorithm. In
Computer Graphics (SIGGRAPH ’87 Proceedings), volume
21, pages 163-169, July 1987.
[18] S-F Chang, J.R Smith, H.J. Meng, H. Wang, and D.
Zhong. Finding images/video in large archives. D-Lib
Magazine, February 1997.
[19] Stavros Christodoulakis and Peter Triantafillou.
Research and development issues for large-scale
multimedia information systems. ACM Computing Surveys,
Dec 1995.

