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Abstract 
We address the problem of observin a moving 

agent. We advocate a modeling approacg for the vi- 
sual system and its observer, where a discrete event 
dynamic system (DEDS) frame work is developed and 
"events" are defined as ranges on parameter subsets. 
In particular, we propose a system for observing a 
manipulation process, where a robot hand manipu- 
lates an object. We recognize the hand/object in- 
teraction over time and a stabilizing observer is con- 
structed. Low-level modules are developed for recog- 
nizin the events that causes state transitions withln 
the &namic manipulation system. The work exam- 
ines closely the possibilities for errors, mistakes and 
uncertainties in the manipulation system, observer 
construction process and event identification mech- 
anisms. The system utilizes different tracking tech- 
niques in order to observe and recognize the task in 
an active, adaptive and goal-directed manner. 

1 Introduction 
We discuss a new framework and re resentation for 
the general roblem of observation. Tge system being 
studied can !e considered as a "hybrid" one, due to the 
fact that we need to report on distinci and discrete vi- 
sual states that occur in the continuous, asynchronous 
and three-dimensional world, from twedimensional 
observations that are sampled eriodically. In other 
word, the system being observefand reported on con- 
sists of a number of continuous, discrete and symbolic 
parameters that vary over time in a manner that might 
not be "smooth" enough for the observer, due to visual 
obscurities and other perceptual uncertainties. 
The problem of observing a moving agent was ad- 
dressed in the literature extensively. It was discussed 
in the work addressing tracking of targets and, deter- 
mination of the optic flow [2,7,10,17], recovering 3-D 
parameters of different kinds of surfaces [6,12,15,16], 
and also in the context of other problem [1,3,8,9]. 
However, the need to recognize, understand and re- 
port on different visual steps within a dynamic task 
was not sufficiently addressed. In particular, there is 
a need for high-level symbolic interpretations of the 
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actions of an agent that attaches meaning to the 3- 
D world events, as opposed to simple recovery of 3-D 
parameters and the consequent tracking movements to 
compensate their variation over time. 

In this work we establish a framework for the en- 
eral roblem of observation, recognition and unter- 
s t an lng  of dynamic visual systems, which may be 
applied to different kinds of visual tasks. We con- 
centrate on the problem of observin a manipulation 
grocess in order to illustrate the iieas and motive 

ehind our framework. We use a discrete event dy- 
namic s stem as a high-level structuring technique to 
model t i e  visual manipulation system. Our formula- 
tion uses the knowledge about the system and the dif- 
ferent actions in order to solve the observer problem 
in an efficient, stable and ractical way. The model 
incorporates different hanf/object relationships and 
the possible errors in the mani ulation actions. It 
also uses different tracking mecganlsms so that the 
observer can keep track of the workspace of the ma- 
nipulating robot. A framework is developed for the 
hand/object interaction over time and a stabilizing 
observer is constructed. Low-level modules are devel- 
oped for reco izing the "events" that causes state 
transitions w i g i  the dynamic manipulation system. 
The process uses a coarse quantization of the manip- 
ulation actions in order to attain an active, adaptive 
and goal-directed sensing mechanism. 

The work examines closely the possibilities for errors, 
mistakes and uncertainties in the visual manipulation 
system, observer construction process and event iden- 
tification mechanisms, leading to a DEDS formula- 
tion with uncertainties, in which state transitions and 
event identification is asserted according to a com- 
puted set of 3-D uncertainty models. 

We describe the automaton model of a discrete event 
dynamic system in the next section and then proceed 
to formulate our framework for the manipulation p r e  
cess and the observer construction. Then we develop 
efficient low-level event-identification mechanism for 
determinin different manipulation movements in the 
system a n t  for moving the observer. Next, the un- 
certainty levels are described in details. Some results 
from testing the system is enclosed and future exten- 
sions to the system are discussed. 
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2 Discrete Event Dynamic Sys- 
tems 

Discrete event dynamic system (DEDS) are dynamic 
systems (typically asynchronous) in which state tran- 
sitions are triggered by tlie occurrence of discrete 
events in the system. DEDS are usually modeled by 
finite state automata wit,li partially observable events 
together with a mechanism for enablin and disabling 
a subset of state transitions 11,13,14. We propose 

sion and robotics tasks, in particular, we use tlie model 
as a high-level structuring technique for our system to 
observe a robot hand mani ulating an object. We can 
represent a DEDS by tlie &Ilowing quadruple : 

that this inodel is a suitable r t  ramewor * for many vi- 

c = (s, E, U, r) 
where X is the finite set. of states, 3 is the finite set 
of possible events, Cl is t.he set of admissible control 
inputs consisting of a specified collect~on of subsets of 
C, corresponding t.o tlie choices of sets of controllable 
events that can be enabled and l? 5 is tlie set of 
observable events. 
We can visualize the concept of DEDS by an example 
as in Figure 1, the graphical representation is quite 
similar to  a classical finite automaton. Here, circles 
denote states, and events are represented by arcs. The 
first symbol in each arc label deiiotses tlie event., while 
the symbol following “/” denotes tlie corresponding 
output (if the event is observable). Finally, we mark 
the controllable eve1it.s by “:U”. 

Figure 1 : A Siniple DEDS Esample 

Thus, in this example, S = {0,1,2,3}, 3 = { a .  d, 6}, 
r = {cr,6}, and 6 is cont.rollable a t  state 3 but not at 
state 1. 
Stabilit can be defined with respect to tlie .sfnles of 
a DEDg automaton. Assuming that we have identi- 
fied the set of “good” states, E, that we would like 
our DEDS to “stay within” or do not stay outside for 
an infinite time, then stabilizahility can be foriually 
defined as follows : 
Given a live system A and sonic E C S, L’ E S is 

zable with respect to  E ( or E-stabilizahle ) if 
*exists a state feedback Ii such that 2’ is alive and 

E-stable in . 4 ~ .  A set ofstates, Q, is astahilizable set 
if there exists a feedback law A‘ s) (a  control pattern) 

is a stabilizable system if S is a stabilizable set. 

A DEDS is termed obserunble if we can use t.lw obser- 
vation sequence to determine tlie current state exactly 
a t  intermittent points in  kine separated by a bouridrd 
number of events. More formally, taking any sufi- 
ciently long string, s, that can be generated from any 
initial state t. For any observable system, we can tlien 
find a prefix p of s such that p takes 2: to  a unique state 
y and the length of the remaining suffix is bounded by 
some integer no. Also, for any other string t ,  from 
some initial state t’, such that t has tb same output 
string as p ,  we require that t takes x to the saiiie, 
unique state y. 

Tlie basic idea behind strong output stabilizability is 
that we will know that the system is in state E iff 
tlie observer state is a subset, of E. Tlie coinpensator 
should then force tlie observer to a. st.at.e corresponding 
to a subset of E at  iiitervals of a t  most a finite integer 
i observable transitions. If 2 is the set of states of tlie 
observer, then : 
A is strongly output E-stabilizable if there exists a 
state feedback A’ for tlie observer 0 such that 01; is 
stable with respect to Eo = { i E 2 12 C E }. 

so that every t E Q is alive an d stable in A K ,  and .1 

3 Modeling and Observer Con- 
struction 

hianipulation actions can be motlelecl eflicient ly wil  hin 
a discrete event dynamic system franiework.\\P I I ~ P  

the DEDS niodel as a high level structuring tecliniqiic? 
t40 preserve and niake use of the information we know 
about the way in which each nianipulat~ion task slioiiltl 
be performed. 

I 1 - 1  I I I I  I 

Figure 2 : A AIodel for a Grasping Task 
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3.1 Building the Model 

We present a simple model for a .rasping task. The 

grasping it. As shown in Figure 2, the model repre- 
sents a view of the hand a.t state 1, with no object in 
sight, at state 2, the object starts to appear, a t  state 3, 
the object is in the claws of the gripper and at state 4, 
the claws of the gripper close on the object. Different 
orientations for the approaching hand are allowable 
and observable. State changes occur only when the 
object a ear in si ht or when the hand encloses it. 
It shoulcf !e noted &at these states can be considered 
as the set of “good” states E ,  since these states are 
the expected different visual configurations of a hand 
and object within a grasping task. States 5 and 6 rep- 
resent instability in the system as they describe the 
situation where the hand IS not centered with respect 
to the camera imaging plane. The events are defined 
as motion vectors or motion vector probability distri- 
butions, as will be described later, that causes state 
transitions and as t,he appearance of the object into 
the viewed scene. The controllable events are denoted 
by “: t’. 

model is that of a gripper approac !I ling an object and 

3.2 Developing the Observer 

In order to  know the current state of the manipulation 
process we need to observe the sequence of events oc- 
curring in the system and make decisions regarding the 
state of the automaton, state ambiguit,ies are allowed 
to occur, however, they are required to be resolvable 
after a bounded interval of events. The goal will be 
to make the system a strongly output stabilizable one 
and/or construct an observer to satisfy specific task- 
oriented visual requirements. As an example, for the 
model of the grasping t,ask, an observer can he formed 
for the system as shown in Figure 3. It can be easily 
seen that the system can be made stable with respect. 
to the set EO. 

! w =’ 

Figure 3 : Observer for the Grasping System 

3.3 Identifying Motion Events 
We use the image motion to estimate the hand move- 
ment. This task can be accomplished by either feature 
tracking or by computing the full optic flow. The im- 
age flow detection technique we use is based on the 
sum-of-squared-differences optic flow. The sensor ac- 
quisition procedure (grabbing ima es) and uncertainty 
in image processing mechanisms k r  determining fea- 
tures are factors that should be taken into consider- 
ation when we compute the uncertainty in the optic 
flow. 

One can model an arbitrary 3-D motion in terms of 
stationary-scenelmoving-viewer as shown in Figure 4. 
The optical flow at the image plane can be related 
to the 3-D world translational and rotational veloci- 
ties and structure as indicated by the following pair of 
equations for each point (2, y) in the image plane [12] 

vy = { Y$ - $} + [(1+ y2) Rx - xyRy - znz] 

where v, and vY are the image velocity a t  image lo- 
cation ( ~ , y ) ,  (Vx,Vy,Vz) and (?x,Ry,Rz) are the 
translational and rotational velocity vectors of the ob- 
server, and 2 is the unknown distance from the cam- 
era to the object. In this system of equations, the only 
knowns are the 2-D vectors 21, and vy, if we use the 
formulation with uncertainty then basically the 2-D 
vectors are random variables with a known probabil- 
ity distribution. A number of techniques can be used 
to linearize the system of equations and to solve for t.he 
motion and struct#ure parameters as random variables 
[4,5,15]. 

U I 

Figure 4 : 3-D Viewer Formulation 
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4 Modeling and Recovering 3- 
D Uncertainties 

The uncertainty in the recovered image flow values re- 
sults from sensor uncertainties and noise and from the 
image processing techniques used to extract and track 
features. We use a static camera calibration technique 
to model the uncertainty in 3-D to 2-D feature loca- 
tions. The strategy used to find the 2-D uncertainty in 
the features 2-D representation is to utilize the recov- 
ered camera parameters and the 3-D world coordinates 
(t,,,, y,,,, z w )  of a known set of points and compute the 
correspondin pixel coordinates, for oints distributed 

the actual feature pixel coordinates and construct 2-D 
histo rams for the displacements from the recovered 
coorcfhates for the experiments performeq. The num- 
ber of the experiments givin a certain displacement 
error would be the z axis of &is histogram, while the 
t and y axis are the displacement error. The three 
dimensional histogram functions are then normalized 
such that the volume under the histogram is equal to 
1 unit volume and the resulting normalized function 
is used as the distribution of pixel displacement error. 

The spatial uncertainty in the ima e processing tech- 

corrupting them, then applyin the feature extraction 
mechanism to both images a n i  computing the result- 
ing spatial histogram for the error in finding features. 
The robability density function for the error in find- 
ing t i e  flow vectors can thus be computed as a spatial 
convolution of the sensor and strategy uncertainties. 
We then eliminate the unrealistic motion estimates by 
using the physical (geometric and mechanical) limita- 
tions of the manipulating hand. Assuming that fea- 
ture oints lie on a planar surface on the hand, then we 
can Sevelop bounds on the coefficients of the motion 
equations, which are second degree functions in z and 
y in three dimensions, v, = fl(z, y) and vy = fz(z, y). 

throughout t fl e image plane a numger of times, find 

nique can be modeled by using synt a esized images and 

Figure 5 : CDF of Vz .  
As an example, we write the equation governing the 
maximum U, value in the first quadrant of the z - y 
plane (t+, y+). 

m-(pi vx, .P. VX. 1) 
= (-*-fnv.) + (%+ Z., 

+ ( m-(w~~tqsvx,)  

+ 9) 2 =y- ( f d ,  
min(pi Vz ,Pm Vz, 1 

where the subscripts s and I denote lower and u p  
per limits, respectively. The above envelopes are then 
used to reject unrealistic 2-D velocity estimates at dif- 
ferent pixel coordinates in the image. The 2-D un- 
certainties are then used to  recover the 3-D uncer- 
tainties in the motion and structure parameters. The 
system is linearized by either dividing the parameter 
space into three subspaces for the translational, ro- 
tational and structure parameters and solving itera- 
tively or using other linearization techniques and/or 
assum tions to  solve a linear system of random vari- 
ables k,5,6,15,16 181. As an example, the recovered 
3-D translational) velocity cumulative density func- 
tion in the 2 direction for an actual world motion 
Vz = 13 cm, is shown in Figure 5. 

5 Conclusions 
State transitions are asserted within the DEDS ob- 
server model according to the probability value of 
the occurrence of an event. Events are thus defined 
as ranges for the different parameters. The problem 
then reduces to computing the corresponding areas 
under the refined distribution curves. An obvious way 
of usin those probability values is to establish some 
threshid values and assert transitions according to 
those thresholds. It might be the case that none of 
the obtained probability values exceeds the set thresh- 
old value and/or all values are very low. In that case, 
there is a good chance that we are at either the wrong 
automata state. The remedy to such problems can be 
implemented through time proximity, that is, wait for 
a while (which is to  be preset) till a strong probability 
value is registered and/or backtrack in the automaton 
model for the observer till a high enough probability 
value is asserted, a fail state is reached or the initial 
amb3guity is asserted. The backtracking strategy can 
be implemented using a stack-like structure associated 
with each state that has already been traversed, which 
includes a sorted list of the computed event probabil- 
ities and a father-state variable. 
We described a system for observing a manipulation 
process. The proposed approach can be generalized 
for other hybrid systems involving different kinds of 
quantization requirements for dynamic systems, for 
sets of discrete, continuous and symbolic parameters. 
The use of discrete event dynamic systems with uncer- 
tainty modeling for the event description enables the 
observer to recognize tasks robustly. The proposed 
system also utilizes the a-priori knowledge about the 
task domain in order to achieve efficiency and prac- 
ticality. The high level formulation allows for recog- 
nizing and reporting on the visual system state as a 
symbolic description of the observed tasks. 
Experiments were performed to observe the robot 
hand. The manipulating agent is the Lord experi- 
mental gripper and is mounted on a PUMA 560. The 
manipulating agent is essentially moved by an external 
operator to perform some actions on a set of objects 
lying on a table. There is no couplin between the 
observer robot and the manipulation rosot . 
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The observer agent is another PUMA 560 on which a 
camera is mounted. The low level visual feature acqui- 
sition is performed on the MaxVideo pipelined video 
processor at frame rate. In particular, there are two 
separate paths from the vision sensor. One path is for 
the computation of the hand 3-D position and orien- 
tation and this is done throu h the MaxVideo. The 
other path (the inner loop) is Sone on a SparcStation, 
in which the image processing modules resides, those 
modules compute 2-D cues from the scene under ob- 
servation. Identification of objects, their location with 
res ect to  the hand and establishin contact, moments 
a n 8  correlation procedures are alp performed within 
the inner loop. 

The 2-D to 3-D conversion, probability com utations, 
and the state machine transitions are pergrmed on 
another SparcStation. All the “thinking” , uncertainty 
recovery and DEDS automaton updating is performed 
on that machine. The decision modules get their input 
data from the feature acquisition procedure and the 
image understanding modules that reside on the other 
two machines. 
The output from the thinking modules is typically in 
the form of reporting states with the associated uncer- 
tainty and position control vectors to be supplied to 
the observer robot for relocation depending on the cur- 
rent state of the DEDS automata. The design exhibits 
modularity, the low-level event identification processes 
and the high-level “thinker” and controller reside on 
separate entities. Thus future modifications and en- 
hancements could be coded and executed in a simple 
and modular fashion. Enhanced Low-level modules 
for segmentation and 2-D understanding of the image 
and to accommodate different kinds of hands could be 
coded within the inner-loop computer module. Differ- 
ent DEDS machines for different task descriptions are 
to coded within the “thinker” module. Control vec- 
tor generation could be modified within the procedure 
that su plies position control vectors to  the observer 
manipuyator , 

6 The Experiments 
A number of experiments were performed with the 
lord ripper doing different manipulating action an a 
set ofdifferent objects. The whole system is tested by 
implementing automatons for recognizing the different 
actions under uncertainty and reporting on them, in 
addition to performing the necessary tracking move- 
ments, in real time. Thus testing both the low-level 
identification mechanisms and the high-level formula- 
tion. 

Tracking is performed for some features on the rip- 
per, using the MaxVideo system. The visual tracting 
system works in real time and a position control vector 
is supplied to the observer manipulator. The 2-D un- 
certainty levels were tested. Feature extraction with 
uncertainty is performed using different noise levels as 
shown in chapter 5, the enclosing “envelopes” were de- 
termined for the mechanical system, the rejection al- 
gorithms are completed and utilized. The refined and 
recovered 3-D distribution of uncertainties are used for 

navigating the automaton and asserting state transi- 
tions. 
Figure 6 shows the configuration of the manipulating 
agent workspace and the observer. Some snap shots 
depicting the observer view, within an experiment that 
involves graspin and lifting is shown in figures 7.  The 
corresponding o%server state output is written under- 
neath each image and the corresponding uncertainty 
is recovered and displayed. 
Figure 8 illustrates another manipulation sequence. In 
that sequence the hand tries to manipulate some ob- 
jects lying on a table. The experiment was shot with 
three video camera. The right hand side of the images 
show the actual observer and manipulation workspace 
and the different configurations as the experiment pro- 
ceed. The upper left corner shows the observer view, 
which is the set of ima es grabbed by the camera for 
processing. The lower !eft corner shows the observer 
state, that is, what the observer “thinks”. A graphical 
representation of the different states and their change 
is used. 
Thus, we have proposed a new approach to solving 
the problem of observing a moving agent. Our ap- 
proach uses the formulation of discrete event dynamic 
systems as a high-level model for the framework of 
evolution of the visual relationship over time. The 
proposed formulation can be extended to accomme 
date for more manipulation processes. Increasing the 
number of states and expanding the events set would 
allow for a variety of manipulating actions. 

Figure 6 : The Experimental Setup 
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Hand and Objects in Scene; Probability = 0.957878 

Hand enclosing an Object; Probability = 0.962517 

Hand is lifting an Object; Probability = 0.918423 

Figure 7 : A Grasping Task Figure 8 : A Manipulation Sequence 
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