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ABSTRACT

We are developing a framework (RISCWare) for the modular
design and integration of sensory modules, actuation platforms,
and task descriptions that will be implemented as a tool to reduce
efforts in designing and utilizing robotic platforms. The frame-
work is used to customize robotic platforms by simply defining
the available sensing devices, actuation platforms, and required
tasks. The main purpose for designing this framework is to re-
duce the time and complexity of the development of robotic soft-
ware and maintenance costs, and to improve code and component
reusability. Usage of the proposed framework prevents the need
to redesign or rewrite algorithms or applications due to changes
in the robot’s platform, operating systems, or the introduction of
new functionalities.

In this paper, the RISCWare framework is developed and de-
scribed. RISCWare is a robotic middleware used for the inte-
gration of heterogeneous robotic components. RISCWare con-
sists of three modules. The first module is the sensory module,
which represents sensors that collect information about the re-
mote or local environment. The platform module defines the
robotic platforms and actuation methods. The last module is
the task-description module, which defines the tasks and applica-
tions that the platforms will perform such as teleoperation, nav-
igation, obstacle avoidance, manipulation, 3-D reconstruction,
and map building.

The plug-and-play approach is one of the key features of
RISCWare, which allows auto-detection and auto-reconfiguration
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of the attached standardized components (hardware and soft-
ware) according to current system configurations. These com-
ponents can be dynamically available or unavailable. Dynamic
reconfiguration provides the facility to modify a system during its
execution and can be used to apply patches and updates, to imple-
ment adaptive systems, or to support third-party modules. This
automatic detection and reconfiguration of devices and driver
software makes it easier and more efficient for end users to add
and use new devices and software applications. In addition, the
software components should be written in a flexible way to get
better usage of the hardware resource and also they should be
easy to install/uninstall.

Several experiments, performed on the RISCbot Il mobile
manipulation platform, are described and implemented to eval-
uate the RISCWare framework with respect to applicability and
resource utilization.

INTRODUCTION

An autonomous robot framework consists of heterogeneous
kinds of components such as the actuators that are used to allow
movement and convert commands into actions, the sensors which
are used to retrieve information from their environments, and the
software components that control the actuation and sensors.

Robot middleware is an abstraction layer residing between
the operation system and the software applications (as shown in
Figure 1). It is designed to manage the heterogeneity of the hard-
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FIGURE 1. Middleware layers.

ware, improve software application quality, simplify software de-
sign, and reduce development costs. A developer needs only to
build his logic or algorithm as a component, after which his com-
ponent can be combined and integrated with other existing com-
ponents. Furthermore, if he wants to modify and improve his
component, he needs only to replace the old one with the new
one. Therefore, experiment efficiency will improve. In [1], the
authors outline some of the problems that face the development
of a widely-accepted set of middleware for robotics.

This work addresses the development of a framework
(RISCWare) for modular design of sensory modules, actuation
platforms, and task descriptions that will be implemented as a
middleware to reduce and streamline efforts in designing robotic
platforms. This framework will be used to customize any robotic
platform by simply defining the available different sensing de-
vices, actuation platforms, and required tasks. In addition, this
framework will significantly increase the capability of robotic in-
dustries in the analysis, design, and development of autonomous
mobile platforms.

RISCWare consists of three modules (as shown in Figure
2). The first module encapsulates the sensing devices that gather
environmental information, such as infrared sensors, ultrasonic
sensors, laser rangefinder and cameras. The framework user
should provide the required parameters for all available sensors.
The user should also describe the platforms and actuation meth-
ods (we have already built a sample platform, the RISCbot II
mobile manipulator). The last module encapsulates the tasks
that the platform will perform such as: teleoperation, naviga-
tion, obstacle avoidance, and map building. Our framework will
provide some predefined tasks and will allow the users to define
new tasks. We have already implemented some tasks including:
teleoperation, navigation, manipulation and obstacle avoidance.

RISCWare is implemented as a messaging system because
messaging provides a high degree of decoupling between com-
ponents, so it is used for the integration of heterogeneous system.
In addition, messaging offers the ability to process requests asyn-

FIGURE 2. Overview of the the RISCWare framework.

chronously to increase the performance of the system and reduce
system bottlenecks. RISCWare ensures that messages are prop-
erly distributed among applications. Furthermore, it provides
fault tolerance, load balancing, and scalability.

The objective is to design a middleware framework to allow
any user, when he gets new sensors, tasks or actuation to just
plug it in, hook up a few cables, and the device will work per-
fectly. Furthermore, the user is able to easily install and unin-
stall any hardware/software component at any time. Further-
more, when the hardware devices are plugged into the frame-
work, they are automatically detected by the middleware, which
loads the appropriate software and makes the device available
for applications to use. This automatic detection and configura-
tion of devices make it easy for the end users to add and use the
new devices and software applications. In addition, the software
components should be written in a flexible way to get the better
usage of the hardware resource and also they should be easy to
installl/uninstall.

Section 2 introduces prior work, Section 3 presents the fea-
tures of RISCWare, then the architecture of RISCWare is pre-
sented in Sections 4 and 5. The RISCWare components and
services are described in Sections 6 and 7. Section 8 provides
a description of our own robot RISCbot II. Section 9 evaluates
RISCWare framework with respect to A greeting Application”.
Finally, Section 10 presents a summary of the work and draws
some conclusions.

RELATED WORK

Several robotics middlewares have been developed over re-
cent years. One of the most widely-used is Player [2]. Player is a
distributed device repository server for robots, sensors and actu-
ators, divided into several dynamically loadable libraries. Stage,
which is the second part of the software, is a graphical, two-
dimensional device simulator. It is designed to support research
in multi-robot systems through its use of socket-based commu-
nication. In addition to Stage, a high-fidelity, three-dimensional
simulator, called Gazebo, is available. Robot Operating Sys-
tem (ROS) [3] provides a structured communications layer above
the host operating systems of a heterogenous compute cluster,
hardware abstraction, low-level device control, implementation
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of commonly-used functionality, message-passing between pro-
cesses, and package management. CLARAty [4] was developed
to create a reusable robotic framework to reduce the cost of inte-
grating and testing new capabilities and technologies on robotic
platforms that are developed at various institutions. It is exclu-
sively targeted to NASA rovers.

There are several other robotics software platforms avail-
able such as Miro [5], RT-Middleware (RTM) [6] SmartSoft [7],
Orca( [8], [9]), OPRoS ( [10], [11]), (UPnP) architecture [12],
and Microsoft Robotic Studio [13]

A survey of robot development environments (RDEs) by
Kramer and Scheutz [14] described nine open source, freely
available RDEs for mobile robots. The RDEs were evaluated and
compared from various points of view, suggestions were made
on how to use the results of the survey. It concluded with a brief
discussion of future trends in RDE design. Nader et al. [15] pro-
vided a short overview of several research projects in middleware
for robotics and their main objective. Nader et al. [16] provided
an overview study of networked robot middleware and different
criteria for evaluating networked robot middleware.

Finally in [17], some freely available middleware frame-
works for robotics were addressed, including their technologies
within the field of multi-robot systems.

Features
RISCWare is designed to provide the following features:

1. Modularity: Supports software re-use and abstraction.

2. Hardware Architecture Abstraction: Hides the low-level
device-specific details of the device in order to give the de-
velopers more convenient, standardized hardware APIs.

3. Platform independence and portability: Users can choose
an appropriate platform for running the applications without
changing in its internal structure; they need only to change
the system’s configuration.

4. Device independence: There are multiple vendors for sen-
sors, such as, GPS, sonars, and so forth. The core algorithms
of the system should not depend on the specific device.

5. Algorithm independence: It should be possible to develop
each algorithm in isolation, that is, in a separate module, and
switch the algorithm being used by selecting some configu-
ration values.

6. Scalability and upgradeable: The framework can be re-
scaled with growing of its components and take full advan-
tage of it. Furthermore, any part of the framework should
be able to extend its capabilities without affecting the other
parts.

7. Ease of use: The framework is designed to be easy to use.

8. Reliable communication for higher priority messages:
RISCWare guarantees the delivery of a high priority mes-
sage, even if partial failure occurs. Guaranteed delivery uses
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a store-and-forward mechanism, which means that incom-
ing messages will be written out to a persistent store if the
intended consumers are not currently available. Persistence
increases reliability, but at the expense of performance. Fur-
thermore, Guaranteed Delivery can consume a large amount
of disk space scenarios. RISCWare allows to configuring of
a retry timeout parameter that specifies how long messages
are buffered inside the messaging system. RISCWare also
allows Guaranteed Delivery to be turned off during testing
and debugging.

. Flexible architecture: The framework has no restrictions on

the architecture of the control software.

Real-time system: Reactiveness of a robot is guaranteed by
the real-time system.

Plug and play: The components (software and hardware)
can be downloaded and installed at or before run-time.
Security: Data transportation and user access should be se-
cure so that no one can control the robots other then the user.
Support for parallelism: RISCWare can perform a number
of processes simultaneously and introduce multiple message
receivers that can process different messages concurrently.
Robustness: Fault detection and recovery capabilities are
necessary to provide the framework the ability to be used in
real, critical situations. A failure in one module should not
damage the whole system. Even if the hardware and soft-
ware of an autonomous mobile robot are carefully designed,
implemented and tested, there is always the possibility of a
fault at runtime. It is desirable that the robot be able to de-
tect and localize faults in its system and be able to set the
appropriate repair or control actions in order to be able to
complete its mission or at least to proceed to a safe mode.
Distribution system: The different software modules of an
application should be able to exchange data, and be able to
run in different machines, from which each one is able to
obtain its maximum efficiency.

Resource sharing: The sensors and actuators of a robot are
treated as shared resources to be used by several software
applications.

Dynamic wiring: Allows for changing in the configuration
of control flow and the data flow at runtime.
Asynchronous: The data and control flow are passed asyn-
chronously from one component to others over the middle-
ware. Asynchronous communication means that the sender
is not required to wait for the message to be received or han-
dled by the recipient. The sender is free to send the message
and continue processing.

Open source: the source code of the RISCWare will be avail-
able for further development.

Other software engineering aspects: such as runtime effi-
ciency, reliability, and maintenance.

Loosely coupled. In order to make RISCWare more loosely
coupled, the following dependencies should be removed
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FIGURE 3. The Architecture of RISCWare Middleware.

[18]: data format (data representation), location (hard-coded
machine addresses) and availability (all components have to
be available at the same time). RISCWare uses a standard
data format that is self-describing and platform independent,
such as XML, to remove the data format dependency. To
solve the other dependencies, all information is sent to an
addressable channel instead of sending information directly
to a specific machine. A channel is a logical address that
both sender and receiver agree on, without being aware of
each other’s identity. The channel decouples the sender and
the receiver of a message.

RISCWare Layers

The architecture of the middleware has six primary layers
for managing the heterogeneity of the hardware and the software,
and creating behaviors that will be used by many applications
(as shown in Figure 3). Each layer is cleanly separated from the
other layers.

OS & Hardware Layer

The OS & Hardware Layer (OSHL) of robot middleware
includes the robot hardware system, composed of a variety of
sensors, actuators and other hardware devices, and also the oper-
ating system (i.e., Microsoft Windows, UNIX, etc.) that runs on
the robot.

Hardware Abstraction Layer

The Hardware Abstraction Layer (HAL), the platform-
dependent part of RISCWare, is used to hide the heterogeneity
of lower hardware devices and provide a component interface
for the upper layers call. HAL removes hardware and operat-
ing system dependencies between the robot and the application
in order to assure portability of the architecture and application
programs. It provides access to the sensor data or actuation com-

mands abstracted from the underlying physical connection of the
resource. The standard interface to hardware devices takes place
through the seven following operations: (All the operations will
indicate error conditions if they fail.) Open, Close, Read, Write,
Get attributes, Set attributes and Lock.

Messaging Layer

The Messaging Layer (ML) acts an intermediary to ex-
change messages between the lower and upper layers. A mes-
sage consists of two basic parts: the header (which describes
the data being transmitted, its origin, its data type, and so on)
and the body (data). There are four types of messages, such as
the Command message, used to invoke a procedure in another
application; the Document message, used to pass a set of data
to another application; the Event message, used to notify an-
other application of a change in this application and the Request-
Reply message, used when an application should send back a
reply. The messages are classified into three categories: Simple
message (small messages with low delay requirements), realtime
message (small message with a certain deadline), and message
stream (message sequence with a certain rate). The priority set-
ting of a message can be adjusted an urgent message that should
be delivered first. There are 10 levels of priority, ranging from 0
(lowest priority) to 9 (highest priority).

The Messaging Layer guarantees the delivery of a high pri-
ority message, even if partial failure occurs (as described in the
”Features” section).

The Messaging Layer supports two types of messaging mod-
els: point-to-point (P2P) and publish-and-subscribe (Pub/Sub).
The P2P messaging model allows RISCWare components to send
and receive messages both synchronously and asynchronously
via virtual channels known as queues. In P2P, a sender sends
messages to a queue that are received by only one receiver (as
illustrated in Figure 4). In the Pub/Sub model, a publisher sends
messages to a message channel called a topic, after which the
messages are received by (one or multiple) subscribers, as il-
lustrated in Figure 5. Messages are automatically broadcast to
consumers rather than having request or poll to the topic. The
Pub/Sub model is more decoupled than the P2P model in that the
publisher is generally unaware of how many subscribers there are
or what those subscribers do with the message.

Actions Abstraction Layer

The Actions Abstraction Layer (AAL) is used to connect a
software component to the ML, using the channel adapters be-
cause the action module and the messaging system are two sepa-
rate sets of software. Channel adapters hide the details of the ML
and allow the software application, just knowing that it has a re-
quest or piece of data to send to another application, or is expect-
ing them from another application. A channel adapter is a special
piece of code customized to both the action module and the mes-
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saging system’s client API. A channel adapter is used to send
messages or receive them, but one instance does not do both.
An adapter is channel-specific, so a single application would use
multiple adapters to interface with multiple channels. An appli-
cation may use more than one adapter to interface to a single
channel, usually to support multiple concurrent threads.

Actions Layer

The Actions Layer (AL) contains the tasks (actions), which
are software modules used for sensing, decision-making, and au-
tonomous action such as motion planning, vision, localization,
tracking, motion control, etc. RISCWare provides a number of
often used functional modules such as obstacle avoidance, nav-
igation, logging and visualization facilities modules. A module
may communicate with the others using message channels. The
Task Manager has been designed in order to allow the user to
dynamically load his/her modules, to specify their execution fea-
tures (i.e. execution period, scheduling policy, priority and so
on) and to export the information to be shared among them. The
AL has three types of execution modes:

1. Concurrent Execution: When two or more tasks run si-
multaneously in parallel, the TM fuses the behaviors and re-
moves any conflicts between them.

2. Time-sharing Execution: Each task runs exclusively at one
time. The TM will schedule each task, interrupt running
tasks, or resume the suspended tasks on schedule. The TM
must decide whether or not the current task can be sus-
pended. When the current task is suspended, the TM must
automatically decide when the robot should resume it. When
the current task cannot be suspended, the TM rejects the new
request or stores this request on a queue for requests await-
ing execution.

3. Sequential Execution: Each task runs using batch process-
ing.

Each application should provide some additional information
about what state is critical for the task. When an application
task breaks the critical state requested by the additional infor-
mation of the counterpart application, the AL selects the time-

sharing execution. For example, when a robot is required to keep
quiet, the robot will not say “hello” while guiding the user. The
other case is interference between both tasks. Interference occurs
when both applications access a device simultaneously. For ex-
ample, a robot cannot shake hands when it holds a cup of coffee
in that hand. When both applications access a device at the same
time, the AL can fuse the motion vectors of each task.

Applications Layer

The application is a set of tasks that work together such as
SLAM, Obstacle Avoidance, Navigation, Vision, etc. Every ap-
plication component should implement its interface. This inter-
face includes the functionalities of starting/stopping a resource,
configuring the resource, and connecting a port of the resource
to a port of another resource. The Software Assembly Descrip-
tor (SAD) describes a software configuration, the properties and
the connections among components. This layer provides the
required application program interface (API) to the application
layer, such as: installing/uninstalling a robot application, start-
ing/stopping it, registering/unregistering an application, etc.

Architecture of the RISCWare

As shown in Figure 6, the lowest layer of robot middleware
is the OSHL. The hardware drivers, used in the second layer
(HAL), are designed to hide the low details of the OS and hard-
ware, and publish a message to an appropriate message channel
in the ML. In the third layer (ML), message channels provide
a very basic form of routing capabilities. A message transla-
tor is used to translate the sensor-specific (private) messages to
canonical (public) messages. For example, a message transla-
tor might transform messages generated by a SONARI1 sonar-
type message to a generic message of sonar, and transform from
sonar, infrared sensors, or laser rangefinder types message to a
generic Proximity message type. A Proximity class defines in-
terface functionality common to sensors like infrareds, sonars,
and laser range finders. For the purpose of consistency, the inter-
face through which components can be accessed and controlled
is standardized. In the (AAL), channel adapters are used to send
messages or receive them to or from the actions, but one instance
does not do both.The actions in the (AL) consist of some tasks.
Each action is implemented as a software module to perform a
number of specific tasks used for sensing, decision-making, and
autonomous action. The actions can communicate together using
message channels. The last layer is the application layer, which
consists of some applications such as SLAM, Obstacle avoid-
ance, Navigation, vision, etc. Every application contains some
actions working together to perform a certain task. In Figure 6,
a robot application “greeting a person” is composed of Face De-
tection, Face Recognition, and Text to Speech Modules.
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RISCWare Components
Introduction

A RISCWare-component is the basic functional module of
the RISCWare framework, such as: a motor module, a sensor
module, and an image processing module. Each component has
an XML configuration file to customize the behavior of com-
ponents, fulfilling the requirement for the reuse of components
that third parties be able to compose and customize without ever
having to look at the source code. Each component has self-
describing capability. Each component should - upon system ini-
tialization - announce its presence, register its services, etc. in
a coherent way. Furthermore, the component has a PnP capabil-
ity, which requires that components can be added and removed
during system operation, without system reboot. Each compo-
nent is designed to be dynamically reconfigurable during robot
operation. There are four levels of component granularity:

1. Atomic component: An atomic component is a particular

type of hardware abstraction that provides the unified in-
terface for upper component calls, such as a motor control
atomic component, various sensors control atomic compo-
nents, etc.

2. Composite component: Several atomic components can be
combined into composite components, which provide supe-
rior components. For example, a robot chassis consists of
several motors and sensors to provide specific service inter-
faces, such as chassis velocity settings. Through this ab-
straction, whether the chassis is a four-wheel drive or a two-
wheel drive, the superior components can control the robot
chassis through the unified service interface.

3. Action component: An action component is a platform-
independent robot algorithm or generic robot control algo-
rithm, for example, an obstacle avoidance algorithm and
Kalman filter, image processing algorithm, etc.

4. Application component: Application components are the
combination of action components needed to complete the
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application functions of the robot system.

The architecture of the RISCWare-component is shown in
Figure 7. The RISCWare-component consists of the following
objects:

1. Core: The main process unit. It executes the commands,
events and software script in the component.

2. Input/Odutput data stream ports: Based on the pub-
lisher/subscriber model, the data port is used for exchanging
data. An output port (publisher) sends data to all registered
subscribers (input ports) through the message channels.

3. Properties: The module’s properties can be configurable at
runtime.

4. Finite State Machine (FSM): As shown in figure 8, the
RISCWare-component has eight states: Initializing, Active,
Error, Starting, Running, Aborting, Stoping and Exit. Figure
8 shows the state transition diagram of RISCWare’s FSM.

5. Commands/Reply port: This port is used to receive the
”Command Messages” from the RISCWare. When the com-
ponent receive a command, it should be processed immedi-
ately (not like the data in the data port).

6. Event/Reply port: This port is used to receive the "Event
Messages” to update the FSM of the component by changing
the current state to the next state of the FSM, based on the
received Event. Furthermore, once an event is detected, the
automatic notification service will alert the interested com-
ponent that the event has occurred.

Hardware Driver

The Drivers are divided into two classes: sensor drivers,
which read input data from sensors, such as the Sonar and GPS;
and control drivers, which control devices, such as left and right
wheels, and the robotic arm. Besides hiding the details of com-
municating with the device, a driver also transforms the data
to match units and conventions used by the rest of the system.
Hardware drivers can send a message by creating the message

FIGURE 8. The FSM transition of the RISCWare-component.

in the appropriate format (based on the definition of the message
format). For example, a message might contain information on
sender, receiver, time stamp and the sensory data then place the
message into the communications system. The hardware drivers
can receive a message by doing the following: receive the mes-
sage from the communications system, and then parse the mes-
sage into its control information and data.

Channels and Filter

As described in [18], message channels provide routing ca-
pabilities, similar to pipe symbol in unix. Once a components
subscribes to a message channel, it will, by default, consume all
messages from that channel. The channels used in RISCWare, are
called Datatype (the data on a channel has to be of the same type).
This is the main reason why RISCWare needs many channels. A
channel is implemented to be a fixed-sized message buffer, so the
old messages are overwritten if the buffer is full. As described
in [18], the following issues should be considered in the chan-
nel management : response time, message format, message size,
message priority, channel volume, channel timeouts, security and
channel persistence to store messages in a persistent form.

The filters are connected by channels. Each filter provides a
very simple interface; it receives messages on the inbound pipe,
processes the message, and publishes the results to the outbound
pipe” [18], as illustrated in Figure 9.

In order to improve the system throughput, parallel process-
ing, as shown in Figure 11, and pipeline can be used, as shown
in Figure 10, to allow multiple messages to be processed con-
currently. However, this configuration can cause messages to be
processed out of order.

Message Translator
As described in [18], a message translator is a special filter
used to translate application-specific messages to canonical mes-
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sages which are independent from any specific application to pro-
vide all applications the ability to communicate together in com-
mon format. ”If the internal format of an application changes,
only the message translator between the affected application and
the coming message channel needs to change while all the other
components remain unaffected.” [18]

RISCWare Services

Services are shared functions aiding the architects and de-
velopers to implement a solution. They are not a part of the core.
A service should be a well-defined function and also should be
always available to respond to the requests. To be able to use
the service, first the new service should add itself in the available
services directory of the middleware. Then, each service should
declare its interface to allow any application to communicate and
use it. The following are the services provided by RISCWare:

1. Directory. 1t is a lookup table used by the system manager
to store data associated with each component such as the
physical and logical address, to track all the components and
key information about the system. It is used to automate the
action of locating any component.

2. Namespace. Provides a separate namespace for each robot
to give the robots the ability to address each other. A
messaging bridge is used to connect between robots agents
which run RISCWare system by replicating messages be-
tween systems. A naming service maps names to addresses.
A name always exists relative to a naming context. A nam-
ing context is itself an object that can be assigned a name.
The namespace used in RISCWare is modeled as a hierar-
chical namespace, presented as a directed graph, as shown
in Figure 12. The Namespace service is used to support mul-
tirobot control.

Robot1

Laser1 Laser2

Sonar1 InfraRed1 InfraRed2

FIGURE 12. A hierarchical namespace used in RISCWare.

3. Hardware Driver Writing : A tool is used to provide fa-
cilities for auto-generating code by using a Driver Template
provided by the RISCWare and the XML Driver file. It is
provided by the user, which is a configuration file that con-
tains the required information about the new hardware de-
vice.

4. System Manager: Monitors the flow of data, manages the
flow of messages through the system, makes sure that all
applications and components are available, tracks quality of
service (e.g. response times) of an external service, and re-
ports error conditions. There is a Quality of Service (QoS)
attached with each component. If the response time exceeds
a specified time, it will report that to the system manager.
Furthermore, the resource manager periodically sends a re-
quest/reply message to every component to check the avail-
ably of this component and whether a failure has occurred
or not.

5. Security: RISCWare offers authentication, authorization,
and secure communications.

6. Error Reporting: The ability to identify and track the error
events when a particular problem occurs.

RISCbot I

The RISCbot II mobile manipulator has been designed to
support our research in algorithms and control for an autonomous
mobile manipulator. The objective is to build a hardware plat-
form with redundant kinematic degrees of freedom, a compre-
hensive sensor suite, and significant end-effector capabilities for
manipulation. The RISCbot II platform differs from any related
robotic platforms as its mobile platform is a wheelchair base.
Thus, the RISCbhot II has the advantages of a wheelchair, such
as: high payload, a high speed motor package, Active-Trac and
rear caster suspension for outstanding outdoor performance, and
adjustable front anti-tips to meet terrain challenges. We used
different types of sensors so that RISChot II can perceive its en-
vironment with accuracy. Our robot hosts an array of 13 sonars,
and 11 infrared proximity sensors above the sonar ring, Hokuyo
Scanning Laser Rangefinder, and a wireless network camera.
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FIGURE 13. A prototype of the RISCbot .
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FIGURE 14. Face Recognition and Greeting module integration.

Experiment

A robot application “greeting a person” is implemented to
evaluate the RISCWare framework, with respect to applicability.
As shown in Figure 6, the ”greeting a person” application is com-
posed of Face Detection, Face Recognition and Text-to-Speech
Modules. The Face Detection Module processes images. When
it detects the face of a human, the robot approaches the person,
detecting collisions with obstacles, and sends the image to the
Face Recognition Module to try to recognize the person. If this
person is recognized, his name will be sent to the Text to Speech
Modules. Each module is developed independently and interacts
with each other via RISCware, as shown in Figure 14. Both the
messages from the Face Detection and Obstacle Avoidance mod-
ule are fused by the navigation module to control the movement
of the robot. Generic Video for Linux (V4L2) is used for video
capture. A Logitech Webcam is used to capture images at a rate
of 30 fps. Raw image data is transformed into the OpenCV Im-
age format and sent to the Face Detection Module using message
channels. The algorithms used for Face Detection and Recogni-
tion modules are described in detail in [19].

Results

Face Detection and Recognition modules must be tested si-
multaneously with the input of the Detection Program fed into
the Recognition program. The Face Detection program on an

FIGURE 15. Face Detection Module detecting multiple people in a
single frame

average detects up to five faces in real time (30 frames/second),
running on a Dual Core Intel Processor, therefore bringing the to-
tal to 150 images/second. Figure 15 shows a sample output from
the Detection Program. The main concerns regarding the number
of images that can be detected per frame are the computational
requirement and the need to maintain real time performance.

The Recognition Module, on the other hand, can take each
of the detected faces and search the database to find possible
matches. The initialization process of the Face Recognition
database is found to be a processor hog, hence plans to recompute
the database values at run time had to be abandoned. Another
bottleneck is the total memory requirements for the database,
which increases due to storing the feature vectors in uncom-
pressed formats in system memory.

Conclusions

In this paper, the RISCWare framework is proposed as a
robotic middleware for the modular design of sensory modules,
actuation platforms, and task descriptions. This framework will
be used to customize robotic platforms by simply defining the
available sensing devices, actuation platforms and required tasks.
In addition, this framework will significantly increase the capa-
bility of robotic industries in the analysis, design, and develop-
ment of autonomous mobile platforms. RISCWare is comprised
of three modules. The first module encapsulates the sensors, that
gather information about the remote or local environment. The
second module defines the platforms, manipulators and actua-
tion methods. The last module describes the tasks that the robotic
platforms will perform, such as: teleoperation, navigation, obsta-
cle avoidance, manipulation, 3-D reconstruction and map build-
ing. The objective is to design a middleware framework to allow
a user to plug in new sensors, tasks or actuation hardware, re-
sulting in a fully functional operational system. Furthermore,
the user is able to install and uninstall hardware/software com-
ponents through the system lifetime with ease and modularity. In
addition, when the hardware devices are plugged into the frame-
work, they are automatically detected by the middleware layer,
which loads the appropriate software and avails the device for
applications usage. This automatic detection and configuration
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of devices make it efficient and seamless for the end users to add
and use the new devices and software applications. Finally, some
experiments, performed on the RISCbot II mobile manipulator,
are described to evaluate the RISCWare middleware.
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