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Abstract

The problem of computing the 3-D workspace for redundant articulated chains has ap-
plications in a variety of fields such as robotics, computer aided design, and computer
graphics. The computational complexity of the workspace problem is at least NP-hard.
The recent advent of parallel computers has made practical solutions for the workspace
problem possible. Parallel algorithms for computing the 3-D workspace for redundant
articulated chains with joint limits are presented. The first phase of these algorithms
computes workspace points in parallel. The second phase uses workspace points that are
computed in the first phase and fits a 3-D surface around the volume that encompasses
the workspace points. The second phase also maps the 3-D points into slices, uses region
filling to detect the holes and voids in the workspace, extracts the workspace boundary
points by testing the neighboring cells, and tiles the consecutive contours with triangles.
The proposed algorithms are efficient for computing the 3-D reachable workspace for ar-
ticulated linkages, not only those with redundant degrees of freedom but also those with
joint limits.

1 Introduction

The problem of computing three dimensional workspaces for redundant articulated chains has appli-
cations in a variety of fields such as robotics, computer-aided design, and computer graphics. The
reachable workspace of an articulated chain is the volume or space encompassing all points that a
reference point P on the hand (or the end effector) traces as all the joints move through their respec-
tive ranges of motion [13]. An articulated chain is a series of links connected with either revolute or
prismatic joints such as a robotic manipulator or a human limb.

In computer-aided design, the three dimensional workspace of a human limb or robotic manipulator
can be used in the design of the interior parts of cars, tanks, or space vehicles. Different panels and
keys can be repositioned within the 3-D reachable workspace. These different configurations can be
tested before being manufactured.

Three dimensional workspaces can also be used in the interfacing between computer graphics and
artificial intelligence. Task plans for approaching and grasping an object in either a static or a
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dynamic environment can be formulated by computing the reach capabilities of different agents! and
passing this information, along with the current geometry of the environment, to the planner. The
planner then decides the best way to approach and grasp the object, and also decide which agent is
best to use.

The workspace problem has long been on the agenda of robotics researchers [12,21,10,24,23,22,26,25,
16]; however they have not formulated a satisfactory and general solution. Most robotics techniques
capitalized on computing 2D workspace cross sections for manipulators with specialized geometries.
Two dimensional workspace cross sections are not adequate for manipulators with joint limits since
the workspace is not symmetric. In addition, they force the user to memorize the data set by
looking at multiple displays before making an interpretation or a decision. Finally, two dimensional
workspace cross sections cannot be used in planning systems or computer aided design applications.

2 Background Review

The first efforts to compute the manipulator workspace, based on its kinematic geometry, started
in the mid 1970’s [18,21]. These proved that the extreme distance line between a chosen point
on the first joint axis and the center point of the hand/end effector (extreme reach) intersects all
intermediate joint axes of rotation. However, the above result is not valid if:

1. Any intermediate joint axis is parallel to the extreme distance line, or when two joint axes
intersect.

2. Any joint is not ideal (has limits).

Kumar and Waldron [13] presented another algorithm to compute the manipulator’s workspace. In
their analysis, an imaginary force is applied to the reference point at the end effector in order to
achieve the maximum extension in the direction of the applied force. The manipulator reaches its
maximum extension when the force’s line of action intersects all joint axes of rotation (since the
moment of the force about each axis of rotation must be zero). Every joint of the manipulator can
settle in either of two possible positions under the force action. Hence, this algorithm results in 277!
different sets of joint variables for a manipulator of n joints in the direction of the applied force.
Each set of joint variables results in a point on the workspace boundary. The concept of stable and
unstable equilibrium is used to select the set of joints variables that results in the maximum extension
in the force direction. The above algorithm is used to generate a shell of points which lie on the
workspace boundary by varying the direction of the applied force on unit sphere. This algorithm has
exponential time complexity and only deals with manipulators that have ideal revolute joints.

Tsai and Soni [24] developed another algorithm to plot the contour of the workspace on an arbitrarily
specified plane for a manipulator with n revolute joints. The robot hand is moved to the specified
plane, then the tip of the hand is moved on the plane until it hits the workspace boundary, and
finally the workspace boundary is traced by moving the hand from one position to its neighbor. Each
of these three subproblems is formulated as a linear programming problem with some constraints
and bounded variables (to account for the joint limits). Accordingly, this algorithm suffers from
the limitations of not only being restricted to computing 2D workspace cross section but also high
computational cost.

! An agent can be modeled as a redundant articulated chain.
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Yang [26] and Lee [14] presented algorithms to detect the existence of holes and voids in the ma-
nipulator’s workspace. A workspace is said to have a hole if there exist at least one straight line
which is surrounded by the workspace yet without making contact with it. The hole in a donut is
a simple example for the above definition. A workspace is said to have a void if there exist a closed
region R, buried within the reachable workspace, such that all points inside the bounding surface of
R are not reached by the manipulator. Gupta [9,10] classified voids into two different types. The
first one, called central, occurs around the first axis of rotation and is like the core of an apple. The
second type, called toroidal or noncentral, occur within the reachable workspace and are like a hollow
ring. He [9] also presented qualitative reasoning about the transformation of holes to voids and vice
versa. Both the qualitative method developed by Gupta [9] and the analytical one developed by
Yang and Lee [26,14] are based on mapping the workspace from the distal link to the proximal one
and studying the relationship between the generated workspace Wy (P) and the new axis of rotation
Zk—1. Wi(P) is defined as the workspace generated by the point P while sweeping joints k + 1,....,n
through their entire range while holding axis k fixed. The necessary condition for Wy(P) to contain
a void is that Wy4,(P) has a hole. However, this is by no means a sufficient condition since Wy(P)
may contain no void while Wi1(P) may have a hole depending on the relative position of the axis
Zx and Wiyq1(P). Yang [26] and Lee [14] classified the geometrical relationships between Z; and
Wi4+1(P) into three distinct cases and developed an algorithin for detecting voids in the workspace.
They [26,14] also studied the conditions for the existence of holes and voids for manipulators with
limited joints. If a manipulator has a limited joint (k + 1), then the workspace Wy (P) will have no
hole. Accordingly, the workspace Wy (P) will have no void. In general, the manipulator workspace
W;(P) has a hole as well as a void. However, it is always desirable to have the workspace W;(P)
without any void. This can be solely achieved by proper relative positioning of the first and the
second axes of rotation. Accordingly, this algorithm can be better used to compute the manipu-
lator’s parameters that result in a workspace without holes or voids. The iterative nature of the
above algorithm makes it impossible to implement it in parallel since the computation of Wi(P) can
not proceed until Wj4;(P) is computed. Lee [14] also introduced a kinematic performance index,
called VI (volume index of manipulator workspace). It is defined to be the ratio of a manipulator’s
workspace volume to the cube of the manipulator’s total length. This performance index indicates
the effectiveness of link length on the creation of reachable workspace. They used that index to
compare different commercial robots.

Tsai [22] presented another algorithm, based on the theory of reciprocal screws. In contrast to the
above algorithms that only compute workspace points, this algorithm traces 2D workspace bound-
ary for a given manipulator. The use of the reciprocal screws theory has made computing piecewise
continuous boundary that consists of straight line segments and circular arcs possible. The ma-
nipulator’s workspace is computed by performing the union operation on all the workspaces of the
manipulator’s aspects. An aspect of a robot is interpreted as a set of joint variables such that the
manipulator can reach points inside the workspace at one configuration without hitting a joint limit
[22]. The computed workspace has interior surfaces which are the boundaries of aspects. This algo-
rithm is limited to manipulators which do not have holes or voids in their workspaces. In addition to
this serious limitation, we believe that this algorithm is very costly to use in solving the workspace
synthesis problem and can be better utilized in solving the workspace analysis problem. Both of these
problems and the algorithms for solving them are discussed in detail in the next section. Tsai [22]
also provided an algorithm for computing the workspace geometric properties such as its volume, the
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location of the centroid, and its moments of inertia about the three principal axes. These properties
can be used to characterize the workspace shape as is commonly done in robot vision systems.

Korien [11] did pioneering work in creating 3-D reach volumes by taking polyhedral unions of reach
polyhedra, working along an articulated chain from distal joint inwards. The major drawbacks of

his approach are:

1. High computational cost: The polyhedral unions are very difficult to perform once they become
many-sided.

2. Error-prone: the polyhedral union becomes sensitive to numerical imprecision and geometric
ambiguities (non-planar facets, gaps) as the unions chopped the polyhedra into smaller and

smaller fragments.

3. Conservative approzimation: The above problems cause too few positions of the swept polyhe-
dra to be taken for the unions.

4. Impossible parallel implementation: This is because of the fact that the computation at each
link depends on the computation at the previous one.

2.1 Transformation Arithmetic

In this section, we describe the Denavit-Hatenberg [17,5] notations that are commonly used to
describe articulated chains such as a robot manipulator or a human limb. An articulated chain
is a series of links connected with either revolute or prismatic joints?. We assume without loss of
generality that each joint has one degree of freedom. A joint with m degrees of freedom can be
modeled as m joints connected with links of zero length. The first link of the articulated chain (link
1) is connected to the base (link 0) by joint 13. The final link, denoted by the end effector (link n),
has no joint at its end. Each link (7) has two dimensions: the length (a;) and the twist (o;). The
length (a;) is defined to be the common normal distance between the two axes of j; and of j;;;. The
twist (a;) is defined to be the angle between the two axes of j; and j;;, in a plane perpendicular to
a;. The joint axis ¢ has two normals to it, one for link 7 — 1 and one for link . The distance between
the normals along the joint ¢ axis is denoted by d; and the angle between the normals measured in a
plane normal to the axis is denoted by ;. In the case of a revolute joint ; is called the joint variable
and the other three fixed quantities (d;, a;, @;) are called the link parameters. On the other hand, d;
is the joint variable for a prismatic joint and the other three fixed quantities (6, a;, @;) are called the
link parameters. Hence, any articulated chain can be described kinematically by giving the values of
the four quantities for each link?. The human body contains only revolute joints; however, for each
revolute joint, the joint variable #; typically has a lower limit #;; and an upper limit 6;,. In order
to be able to describe the relationship between two consecutive links, a coordinate frame is attached
to each link as illustrated in figure 1. A homogeneous transformation matrix (A) is used in order to
describe the relationship between consecutive frames. We are going to compute the elements of the
matrix (A) for both revolute and prismatic joints since these elements depend on the joint type.

2The human body contains only revolute joints.
3The base is not considered one of the articulated chain n links.
*Two of these values describe the link itself while the other two describe its connection to a neighboring link.
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2.1.1 Revolute Joints

In this case the joint variable is 6;. The origin of the frame attached to link ¢ is set to be at the
intersection of the common normal between the axes of j; and j;;; and the axis of joint ¢ + 1. If the
joint axes intersect, we set the frame’s origin to be at the point of intersection. In case of parallel
joint axes, we choose the origin such that the joint distance, for the next link whose coordinate origin
is defined, is equal to zero. The z axis for link ¢, denoted by Z;, is coincident with the axis of joint
t+ 1. The z axis for link ¢, called X;, is aligned with the common normal a; in the direction from
joint 7 to joint 74 1. In the special case of intersecting joint axes, X; is chosen normal to the plane of
Zi—1 and Z;. In the case of revolute joint, 6;, is zero when z;_, and z; are parallel and in the same

direction. Figure 1 illustrates the above parameters.
The relationship between successive frames i-1, i can be established by the following translation and

rotation homogeneous transformations:
1. Rotation about Z;_; by an angle 6;, Rot (Z;_1,¥6;).
2. Translation along Z;_; by a distance d;, Trans(0,0,d;).
3. Translation along the rotated X;_; = X; by a distance a;, Trans(a;,0,0).

4. Rotation about X; by an angle o;, Rot (X, a;).

Accordingly, the coordinate transformation equation can be expressed as:
{Yi}= Ai{Yipa}

where

{Y:} = (X5,Y:, Zi, 1)T.

{Yis1} = (Xig1, Yig1, Zigr, )T

Ai= Rot (Z;_1,06;) Trans(0,0,d;) Trans(a;,0,0) Rot (X, a;).

Accordingly, the transformation matrix is:

00,‘ —S(),Cai S@,’Sai a,-COi
50,' C(),Cai —00,‘5&,’ a,~S0,~
0 Sa,— Ca,- di
0 0 0 1

A =

2.1.2 Prismatic Joints

In this case the joint variable is d;. The joint moves in the direction of its axis. Accordingly, the
length a; has no meaning and is set to zero. The origin of the coordinate frame attached to the
prismatic joint is chosen to be coincident with the next defined link origin. As in revolute joints, the
z axis for link ¢, denoted by Z,, is coincident with the axis of joint ¢ + 1. The z axis for link ¢, called
X, is chosen to be normal to the plane of Z;_; and Z;. The zero position is defined to be the one
when d; is zero. Accordingly, the A matrix for prismatic joint is:
cl; -50,Ca; S56;Sa; 0
56, C0,Ca; -CO;Sa; 0

0 Sa; Co; d;

0 0 0 1

A =

-
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We have discussed the relationship between two consecutive links and illustrated how to compute the
matrix (A) elements for both revolute and prismatic joints. Hence, the n transformation matrices ,
A Ay A;...A,_1A,, can be computed for any articulated chain (I1,l2,...,{;) with either revolute or
prismatic joints. Each of the A;’s is a function of the joint variable ; or d; according to the joint
type. The description of the coordinate frame attached to the end effector (link n) with respect to
the base, denoted by Ty, is given by:

Tn= A]AQ...A,‘...An_lAn.

The reachable workspace boundary for an articulated chain that has three links or less can be
represented by explicit equations [23]. Unfortunately, the reachable workspace boundary for an
articulated chain that has more than three degrees of freedom is very hard to describe by explicit
equations [24]. The computational complexity of the workspace problem is at least NP-hard [3,1,4,
2]. We decompose the 3D workspace problem into two phases: workspace point computation and
visualization. Each phase can be implemented in parallel.

3 Workspace Point Computation

The workspace point computation phase is implemented by using forward kinematics. The forward
kinematics problem, which can be solved rather trivially, is the static geometrical problem of comput-
ing the position and orientation of the end effector of the articulated body. Specifically, the forward
kinematics problem is to compute the position and orientation of a distal segment of the body given
the joint positions of the segments proximal to it.

In this section, we present algorithms that are based on forward kinematics. A dense set of reachable
points is computed by positioning each degree of freedom in every possible position. These points
don’t necessarily lie on the workspace envelope (boundary.) If the application only requires comput-
ing the reachable workspace envelope, an edge detection algorithm is used to obtain the workspace
boundary. The following procedure summarizes this approach:

Procedure 3.1 Point Computation Based on Direct Kinematics.

1. Get the list of active degrees of freedom DOF’s that are associated with those joints in the
path from the end effector (distal linkage) to the proximal one.

2. Compute a joint angle for each DOF in the above list such that it lies within the given joint
limits. This step can be done either by placing the DOF randomly between its associated limits
or by uniformly stepping through its limits in each iteration.

3. Compute the end effector position that corresponds to the configuration from step two.
4. Repeat step two and three to compute the required number of points.

5. If the application is surface computation, call an edge detection procedure to compute the set
of the useful points (that lie on the boundary).

The fifth step can be implemented by different algorithms. There are two different classes of algo-
rithms that can be used to compute the boundary based on the surface fitting module.

1. If the surface fitting module is going to compute the surface from a set of 2-D contours, the
set of boundary points can be computed as follows:
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(a) Compute the reachable cube dimensions which is the minimum cube that surrounds all
the computed points. This is done by computing Xnmin, Xmaz,s Ymin, Ymars Zmins Zmaz
for the set of the computed points. This step requires O(n) time where n is the number
of the generated points.

(b) Compute the number of contours (noc) as follows:

n0¢ = ((Zmaz — Zmin)/T€5:) + 1 (1)

(c¢) Compute the boundary for each contour as follows:

i. Allocate an array (A) of size M, N where:

M = (Xmazx — Xmin)/resz) + 1. (2)
N = ((Ymez — Ymin)/resy) + 1. (3)

ii. Mark each cell (or grid element) in the array A with 1 if it contains a computed
workspace point and mark it with 0 if doesn’t contain one.

iii. Compute the set of boundary points by testing the corresponding cells in the array
A. An element of array A lies on the boundary if it has a different value from its
neighbor, i.e.,

A(L,7) # A(5, 5+ 1), A(s,5) # A(3,5 - 1), A(3,7) # A(i+ 1,7), orA(z, ) # A(i = 1,7).
(This assumes that the input points are sufficiently dense).

2. If the surface fitting module is going to compute the 3D reachable surface directly (i.e without
computing 2D contours), then the first and the second steps of the above algorithm are applied
and the test for the boundary condition in step three is extended.

The above procedure can be implemented in parallel by assigning different processors to compute
workspace points at step 3 in procedure 3.1.

4 Workspace Visualization

This module constructs a surface that encompasses the workspace points that were computed by the
workspace point generation module. We have developed an algorithm that accepts the workspace
contours computed by the direct kinematics algorithm. The algorithm can be summerized in four

steps:

Step 1 Region Filling. This step involves determining the number of regions in a given workspace
contour. The number of holes and voids in the given workspace contour can be determined.
Region filling algorithms are a common graphics utility and are widely used in paint programs
[20,15,19,7,6]. A region is a collection of pixels. There are two types of regions: 4-connected
and 8-connected. A region is 4-connected if every 2 pixels can be joined by a sequence of pixels
using only up, down, left, or right moves. A region is 8-connected if every 2 pixels can be joined
by a sequence of pixels using up, down, left, right, up-and-left, up-and-right, down-and-left.
or down-and-left moves. Region filling algorithms start with a given seed point (z,y) and set
this pixel and all of its neighbors with the same pixel value to a new pixel value. A good
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region-filling algorithm is one that reads as few pixels as possible. We use Fishkin’s algorithm
to compute the number of regions in a given workspace cross-section (contour). We search the
contour for a reachable workspace cell (marked with 1) and use it as a seed point. The set of
all cells connected to the seed point comprise a reachable region. The region filling algorithm
sets those cells to a new value that greater than 2. The region filling. algorithm is called as
many times as necessary in order to set different regions with unique values.

Step 2 Boundary Detection. The purpose of this step is to compute the boundary of different
regions in a workspace cross-section. This can be achieved by testing the neighbors for each
cell in the workspace cross-section. An array element A(%,7) of the workspace cross-section is
considered a boundary cell if it has a different value from its neighbor, i.e.,

A(i,5) # A(i, 5 + 1), A(i,5) # A(i,5 — 1), AL, §) # AGi+ 1,5), orA(i, §) # A(i - 1,5).

Step 3 Contour Tracing. This step computes the edges that connect the boundary points for a
given region.

Step 4 Triangulation. This step constructs the 3D workspace by tiling adjacent contours with
triangles. We have used the Fuchs’ algorithm [8] that interpolates the triangular faces between
parallel slices in order to construct the 3D workspace surface from the different cross sections.
Each of the above steps can be implemented in parallel by assigning different processors to
compute different contour sections.

5 Conclusions

We have presented a system for computing 3D workspaces for articulated chains not only those
with redundant degrees of freedom but also those with joint limits. The first phase of that system
computes workspace points in parallel. The second phase fits a 3D surface around the volume that
encompasses the workspace points computed by the first phase.
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1-1 5 eJ > X i-1
di-1 JOINTI
—
JOINT I-1 Figure 1: The relationship between consecutive links.
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