_ i et e

e e o il

Preprints of the 1FAC International Conference on
Intefligent Control Systems and Signal Processing

A FRAMEWORK FOR REVERSE ENGINEERING VLSI CHIPS
Khaled M. Elleithy and Tarek Sobh

Compurter Science and Engineering Departnient
University of Bridgeport
Bridgeport, CT 06607
clleirliabrideeport.edy , sobh brideeport ¢du

Abstract: The reverse engineering process for VLSI chips is a complex operation that can
cost from S10,000 for the simplest chips to hundreds of thousands of dollars for complex
chips. In this paper, we present an overview of the process of reverse engineering VLSI
chips. The paper outlines the steps involved in the process of reverse engineering chips as
well as the different techniques uwsed to extract the functionality of these chips.

Furthermore, the paper presents two case studies for reverse engineering VLSI chips.

Coprvright © 2003 IFAC

KEYWORDS: Architectures, Models,
Propertics, Benchmark Examples

1. INTRODUCTION

Reverse engineering can be defined as the construction
of a high-level functional representation of an
implemented system to facilitate one's understanding of
the system. The construction process is algornthmic and
uses the strategy of generating descriptions at
successively higher levels of abstraction. For ICs, cach
step consists of identifying sets of components that
constitute an abstract function and then recasting the
circuit description in terms of these abstractions.

Designers use reverse engineering to determine
system's specifications, output functions, or other
design characteristics from an existing implementation.
This contrasts with the customary "forward"
(specification to implementation) design process.
Companies often reverse-engineer their competitors'
products to discover how they are made or to evaluate
their quality. In the software industry, for example,
reverse engineering refers to updating, for reuse,
programs whose specifications have been lost or
inadequately documented as described by Chikofsky

VLSI, Multilevel Structures, Geometric

(1991). In computer hardware, designers have used
reverse engineering to extract gate-level models from
transistor circuits (Madisetti e7 @/, 1999),

Madiseti ¢7 o/ (1999} introduced the rationale for
reengineering legacy embedded systems, Legacy
systems are hardware and/or software systems
currently performing useful tasks but requiring
reengineering or upgrading for various reasons. The
most pressing reasons are parts obsolescence and
system needs such as greater functionality, increased
processing and interface scalability, better form (size,
weight, power, volume), and decrcased maintenance
and life-cycle support costs. Another reason is the
availability of superior algorithms, architectures, and
technologies that meet or exceed the system's
specifications, often at a lower cost.

Figure 1, shows the rclationship between requirements,
design, and implementation and where forward
engineering and reverse engineering fit. Chickosfky
and Cross (1991) defined the following terms:

el

442

e Requirements: specification of the problem
being solved, including objectives, constraints
and business rules

¢ Design: specification of the solution

e Implementation: coding, testing, and delivery of
the operational system

e Forward engineering: is the traditional process
of moving from high-level abstractions and
logical, implementation-independent designs 10
the physical implementation of a system.

e Reverse engineering. Reverse engincering is the
process of analyzing a system (0 identify the
system components and their relationships and
create representation of the system in another
form or at a higher level of abstraction.

——

Section 2 of this paper provides a literature survey and
presents the most up-to-date reported research in the
area of reverse engineering chips. Sections 3 and 4
present two case studies. The first case is the reverse
engineering for the ISCAS-85 benchmark. The second
case is the reverse engineering for the AWACS Radar
System by the Air Force which is a project the Air
Force awarded Northrop Grumman Corporation for a
proof-of-concept project aimed at capturing the
functionality of the E3 Airborne Warning and Control
System (AWACS) radar system hardware in VHDL.
The final section of the paper offers summary and
conclusions.

e,
mantation
objectives, Design imple
ij
Forward Forward i
st wlpeailits | geeorrg | | sopmeerng | ... jo
Reverse Reverse
N IR 6, o D REARCRRR - g
Desagn Design
| z
g | 00 Resnginaening
{renovation) (renovation)

Figure 1: Relationship between terms (Chikofsky and Cross 1990).

2. REVERSE ENGINEERING OVERVIEW

and. via a succession of refinements, produces a design
that can be implemented directly. Reverse engineering,
on the other hand, begins with the disassembly of a
manufactured device and culminates with an abstract
description of the device's functionality. In the case of
integrated circuits, the disassembly process consists of
obtaining an image of the internal structure of a circuit
and extracting a transistor-level netlist from the image.
This description is then transformed to successively
higher levels of abstraction until a suitably high-level
description of the circuit's behavior is obtained.

The key to applying computer-aided software and
hardware engineering to the maintenance and
enhancement of existing systems lies in applying
reverse-engineering approaches. However, there 1s
considerable confusion over the terminology used in

Reverse engineering is the inverse of the design
process (Chisholm e7 @/ 1999). The design process
begins with an abstract description of a target device
both technical and marketplace discussions. In
(Chikofsky and Cross 1990) the authors define and
relate six terms: forward engineering, reverse
engineering, redocumentation, design recovery,
restructuring. and reengineering. Their objective was
not to creatc new terms but to rationalize the terms
already in use. The resulting definitions apply to the
underlying engineering processes, regardless of the
degree of automation applied.

Electronics products of the future must be realized
efficiently promising higher performance at lower cost
within much shorter product design and upgrade
cvcles. ASIC foundries and EDA vendors see
increasing VLSI integration capabilities as a promising
new business opportunity through the System-on-Chip
(SOC) paradigm that cxtends ASICs design from the

. =

ra— 1 P

component level to the system level. The systems
integration community and clectronics packaging
design vendors sce the systems market as an extension
of their current business, the so-called Systems-on-
Package (SOP) paradigm, and one that raises their role
to new level of importance 1n the product supply chain
linking electronics packaging directly to product
specification, early design and ASIC design. In
addition to political 1ssues there exist technical, legal,
and business challenges, both paradigms must
overcome to find broad-based acceptance. In
(Tummala and Madisetti 1999) the authors suggest that
the Systems-on-Package (SOP) paradigm promises a
higher return on investment (ROI) at a much lower risk
for the electronics products design, well into the new
millennium.

In (Jarzabek and Woon 1997) the authors start to
formalhizing what we already know about reverse
engineering. and propose a framework for describing
and evaluating reverse engineering methods and tools.
First, thev build design models for a source language
and for the recovered design, Then, they describe what
a given reverse engineering method or tool achieves as
a formal mapping from the source language desien
model into the recovered design model. They show use
object recovery scenarios to illustrate the presented
concepts.

By the early 1990s the need for reengineering legacy
systems was already acute, but recently the demand has
mcreased significantly (Muller e7 @/ 2000). Legacy
hardware and software systems are defined as those
that are currently performing useful tasks, but face
possible interruption or termination of opcration in the
future duc to a number of rcasons {Madisetti er @/
1999). The "push" reasons include the nced for
increasing functionality, processing and interface
scalability, better form (size, weight, power, volume)
requirements, decreased maintenance and hifecycle
support costs, and resilience to parts obsolescence. The
"pull” reasons can include the availability of superior
competing algorithms, architectures, and technologies
meeting (or exceeding) the specifications of the legacy
system, often at a lower cost. Legacy systems can be
found everywhere in the military and commercial
electronics area. Indeed, in commercial arena,
electronics systems, such as PCs and cellular phones,
are often obsolete in a matter of months, and increasing
pressures of time-to-market has institutionalized re-
engineering of products. In the military arena, the long
hfetimes of deployed systems, decades in the case of
radar systems, has made it inevitable that one 1s faced
with the problem of legacy systems.

The demand by all business sectors to adapt their
information systems to the web has created a
tremendous need for methods, tools, and infrastructures
to evolve and exploit existing applications efficiently
and cost-effecuvely. Reverse engineering has been
heralded as one of the most promising technologies to
combat this legacy systems problem. Muller er &/
(2000) present a roadmap for reverse engineering
research for the first decade of the new millennium,
building on the program comprehension theories of the
1980s and the reverse engineering technology of the
1990s.

Designer’s productivity has become the key-factor of
the development of electronic systems. An increasing
application of design data reuse 1s widely recognized as
a promising technique to master future design
complexities. Since the intellectual property of a design
1s more and more kept in software-like hardware
description languages (HDL), successful reuse depends
on the availability of suitable HDL reverse engineering
tools. In (Mueller-Glaser e7 @/ 1996) new concepts for
an integrated HDL reverse engineering tool-set are
presented as well as an implemented evaluation
prototype for VHDL designs. Starting from an arbitrary
collection of HDL source code files, several graphical
and textual views on the design description are
automatically generated. The tool-set provides novel
hypertext techniques, expressive graphical code
representations, a user-defined level of abstraction, and
interactive configuration mechanisms i order to
facilitate the analysis, adoption and upgrade of existing
HDL designs.

Digital designers normally procced from bchavioral
specification to logic circuit; rarely do they need to go
in the reverse direction. One such situation examined in
(Hayes and Hansen 1999). recovering the high-level
specifications of a popular set of benchmark logic
circuits. The authors present their methodolegy and
experience in reverse engineering the ISCAS-85
circuits. They also discuss a few of the practical uses of
the resulting high-level benchmarks and make them
available for other researchers to use.

The problem of finding meaningful sub-circuits in a
logic layout appears in many contexts in computer-
aided design. Existing techniques rely upon finding
exact matching of subcircuit structure within the
layout. These syntactic techniques fail to identify
functionally equivalent subcircuits, which are
differently implemented, optimized, or otherwise
obfuscated. In (Doom e¢r &/ 1998) a mechanism for
identifying functionally equivalent subcircuits that is
capable of overcoming many of these limitations is

443

presented. Such semantic matching i1s particularly
uscful in the field of design recovery.

In {Princtto et al. 1998) a new approach for sequential
circuit test generation is proposed that combines
software testing based techniques at the high level with
test cnhancement techniques at the gate level. Several
sequences are derived to ensure 100% coverage of all
statements in a high-level VHDL description, or to
maximize coverage of paths. The sequences are then
enhanced at the gate level to maximize coverage of
single stuck-at faults. High fault coverages have been
achieved very quickly on several benchmark circuits
using this approach.

As a real life example of reverse engineering, the Air
Force funded of the Electronic Parts Obsolescence
Initiative (EPOI) to ensure Air Force mission readiness
and increase nagging obsolescence (Stogdill 199).
EPOI 1s developing management & re-engineering
tools for defense systems affected by parts
obsolescence and reliability models for commercially
manufactured electronics utilized in defense systems.
This initiative currently consists of eight programs
covering three key arecas of work: 1) Parts
Obsolescence Management and Re-engineering Tools,
2) The Application of Commercially Manufactured
Electronics (ACME), and 3) Pilot Demonstration
Programs. The initiative's main technology foci are
mixed signal electronics, Application Specific
Integrated Circuits (ASIC), Physics of Failure
validation with commercial field return data, and
standardized information exchange.

3. REVERSE ENGINEERING TECHNIQUES

Hayes and Hansen (1999) have defined the following
techniques for reverse engineering of hardware:

Litrary modites. Common components, such as
multiplexers, decoders, adders, and CLA generators,
are found in 1C manufacturers' data books or cell
libraries and in textbooks. The modules usually exist
in variants due to differences in input size (fan-in or
word length) and gate types.

Repeared modules. Often a subeircuit whose logic
function is not apparent occurs frequently, especially
in data-path circuits where the same circuit slice
repeats for different bits of input data.

Expected global structures. After recognizing several
modules, the reverse engineer can look for common

structures, signals, or functions that use these
modules.

Computed fincrions. With a few structural clues to a
subcircuit's role, we can compute its logic function in
symbolic or binary (truth table) form, then relate it to
known functions or to other circuit functions. This is
feasible only for functions of typically no more than
four or five signals.

Control funcrions. We can often identify key control
signals whose settings partition a complex function
into simpler oncs.

Bus structures. The outputs of repeated modules often
can be grouped into buses. Further circuit
partitioning can result from noting where these
common signals lead.

Common names. When analyzing netlists, we
sometimes find a shared name among scveral
clements. We may not know what that name implies,
but grouping the clements together temporarily can
lead to further structural insights.

Black boxes. If all else fails, we can encapsulate a
circuit as a module of unknown function or black
box. This step is unavoidable when dealing with low-
level control circuits consisting of truly random
logic.

4. THE REVERSE ENGINEERING PROCESS

Chisholm, ez @/ (1999) suggested the following outline
for the reverse-engineering process.

A. Sample Preparation. :

The first step in reverse-engineering an integrated chip
1S to extract the chip's design layout. This involves
removing the chip's overburden material cither by
chemical etching or mechanical slicing, which are both
destructive. Removing the overburden is an extracting
process that must adequately cxpose the underlying
transistors and their interconnections without damaging
them.

B. Image acquisition

The next step i1s to scan the sample. The scanning
methodology used depends on the density of the
transistors in the sample. For example, a state-of-the-
art chip may require a scanning electron microscope
(SEM) with a highly accurate stage. The SEM captures
a series of high-resolution images or micrographs,
which are assembled (via stitching or mosaicking) to

.

oy -

— ._—.-_.A-ﬂ---‘-"""_

form a complete image of the device. The image 1s
stored as bitmap data.

C. Geometric Description

Next, we extract geometric data from the bitmapped
image. The software used for this process converts the
image into a geometric data stream format such as
GDS-I1. This process depends on knowledge about the
implementation technology to provide recognition of
geometric entities,

D. Transistor Netlist

This step transforms the geometric description into a
transistor-level netlist via design rule checkers that
examine the geometric data and recognize physical
structures such as resistors and transistors.

£, Gare Level Netlist

This level consists of mapping transistor cells to gates.
Typically, there are a limited number of mappings,
suggesting that a pattern-matching approach i1s well
suited for automating this process. However, the
automation approach must be capable of performing
the mapping in the presence of elements that have no
logical function elements that boost a device's output
without affecting the logic.

. Module Level Description
In this step we need to derive a module-level
description from the gate-level netlist.

G. Register Transfer and Behavioral Descriptions
Subsequent abstraction of the module-level description
produces a register-transfer-level description. Still
further abstraction results in a behavioral description.
At present, however, these last two levels in the
reverse-engineering hierarchy are beyond technological
capabilities.

5. CASE STUDY: THE ISCAS 85 BENCHMARK

The techniques presented in section 2 were used in
reverse engineering the ISCAS-85 benchmark circuits
in (Hayes and Hansen 1999). In this section we present
the most complex circuit of this benchmark, which 1s
34-bit adder and magnitude comparator with input
parity checking. The number of gates for this circuit 18
3512,
Statistics:207 inputs; 108 outputs; 3512 gates
Function:34-bit adder and magnitude comparator with
input parity checking

This benchmark circuit contains a 34-bit adder (M3), a
34-bit magnitude comparator (M8) using another 34-bit
adder, and a parity checker (M9). Each of the XA, YA,
and YB buses 15 fed by a sct of 2:1 multiplexers
controlled by the Sel input. Bits 31-22 of XA and YB

can be set to logic 0 with the Mask input. The two
adders M35 and M8 are identical, and are of carry select
type, as are those of ¢5315. They consist of alternating
4- and 5-bit blocks, with the last block being 2 bits.
The comparator (M8) of this benchmark 1s similar 10

that of ¢2670. It performs the comparison YB>XB (if

Sel=0) or YB>!YAI (if Sel=1) by calculating YB+!XB
(if Sel=0) or YB+!YAI (if Sel=1) (Note: the input bus
YAl 1s assumed to be inverted). The comparator has an
output {CoutY) for the whole 34-bit inputs as well as
an output (CoutY _17) for the 17-bit portion of its
inputs. Module M7 calculates the parity for the
following four parts of the adder output SumX:
SumX][8:0], SumX[17:9], SumX[26:18], SumX][33:27].
Module M9 appears to be a type of sanity checker that
calculates the AND of the panities of all its inputs.

Models:

e 1. Original ISCAS gate-level netlist

o in ISCAS-89 format

o in Verilog

e 1. Verilog hierarchical netlist (functionally
equivalent to 1)

e [11. Verilog flat netlist (flat version of II:
functionally equivalent to I, but with minor
structural differences)

Evaluarion.

1.The recverse ecenginecring process reported 1n
(Hayes and Hansen 1999) starts with gate level
representation towards higher levels
representations. This process is different from
starting from a physical chip and extracting
transistor information then synthesizing gate level
information.

A circuit of 3512 gates is a very small circust
compared to complex chips that contain millions
of transistors.

6. A REAL LIFE EXAMPLE OF REVERSE
ENGINEERING: THE REDESIGN OF AWACS
RADER SYSTEM BY THE AIR FORCE

In August 1997, the Air Force awarded Northrop
Grumman Corporation a proof-of-concept project
aimed at capturing the functionality of the E3 Airborne
Warning and Control System (AWACS) radar system
hardware in VHDL. The Air Force Research
Laboratory Materials and Manufacturing Directorate
and Northrop Grumman funded this effort jointly. The
project evaluated the cost-effectiveness of describing
the AWACS radar synchronizers' functions in VHDL
code and using the VHDL model to redesign circuit
card assemblies plagued by parts obsolescence.

45

446

During the AWACS' long life cycle, designers have
developed several configurations of its AN/APY-1 and
AN/APY-2 synchronizers. The current synchronizer is
a two-level card cage that resides in the radar's analog
cabinet. It consists of 29 circuit card assemblies, of
which 18 are unique styles and 17 contain a large
number of obsolete components, making them
unsupportable or irreparable.

Northrop Grumman successfully developed a process
to capture the AWACS synchronizer functionality with
VHDL code. Using the code, they needed less time
than usual to redesign each assembly. Also, they could
use the latest VHDL model of the hardware as a
baseline when inserting new technology. Another
advantage was that one VHDL design could replace
multiple circuit card assemblies that could not be
repaired and for which no spares were available. For
approximately the same cost as replacing the single,
failed circuit card assembly, a replacement containing
the functionality of a whole group of assemblies could
be inserted into the system. The smaller number of
assemblies would cost less to procure and the new
system would be more reliable. Table 1. shows the cost
items in the reverse engineering of the board,

Table 1. Cost Analvsis

Item Cost
Saving per card $470,000
Saving for 33-AWACS fleet $15,100, 000
Cost for redesign each board using $250,000
current technology

Cost for redesign the 17 boards $4.250,000

Cost of Reverse Engineering the $1,000,000
board

Saving per system

$3,256,000

The results of this proof-of-concept project serves as a
model for further reducing the number of circuit card
assemblies in the AWACS radar. The process model
Northrop Grumman used to develop the VHDL designs
1s applicable to all defense systems. More details of
this example can be found at (Stogdill 1999).

8. SUMMARY AND CONCLUSIONS

In this paper we present an overview of reverse
engineering VLSI chips. We discuss the steps involved
in this process. Two case studies are reported. In the
first case we examined the reverse engineering process
of ISCAS-85 benchmark. In the second case we
examined the reverse engineering of the AWACS radar
system.

Reverse Engineering of the ISCAS-85 benchmark
starts with a gate level representation towards higher
levels representation. This process 1s different from
starting from a physical chip and extracting transistor
information then synthesizing gate level information.
Furthermore, the most complex circuit used has 3512
gates, which 1s a very small circuit compared with
current chips that contain millions of transistors.

Reverse engineering of the AWACS Rader System by
the Air Force was a proof-of-concept project aimed at
capturing the functionality of the E3 Airborne Wamning
and Control System (AWACS) radar system hardware
im VHDL. The cost of reengineering the board was
$1,000,000.

REFERENCES

Chikofsky, E. J., Cross I, J. H. (1990). Reverse Engineering
and Design Recovery: A Taxonomy. [EEE Sofiware,
January 1990, 13-17.

Chisholm, G., Eckmann, S. T., Lamn, C. M., Veroff, R.
L.(1999) Understanding Integrated Circuits, /ZEE
Design and Test of Computers, April 1999, 24-34,

Cifuentes, C., Fitzgerald, A. (1999) Is Reverse Engincering
Always Legal? /7 Professional, March 1999, 42-48.

Doom, T., Whitc, J.. Wojcik, A., Chisholin, G. Identifying
High-Level Components in Combinational Circuits.
(1998} Great Lakes Symposium on VLSI 98, Michigan,
February 1998, 313.

Hayes, J. P., Hansen, M. C., Yalcin, H. (1999) Unveiling the
ISCAS-85 Benchmarks: A Case Study in Reverse
Engineering. /ELE Design and Test of Computers , July
1999, 72-80.

Jarzabek, S., Woon, 1. (1997). Towards a precise description
of reverse engineering methods and tools. /s/ Luwroniicro
Waorking Conference on Software Mamntenance and
Reengineering, Singapore, March 1997.

Tummala, R. R., Madisetti. V. J. (1999) System on Chip or
System on Package. JE£E Design and Test of
Compurers, April 1999, 48-56.

Madisetti, V. K., Jung, Y. K., Khan, M. H., Kim, J., and
Finnessy, T. (1999) Reengineering Legacy Embedded
Systems. /EEE Desion and Test of Computers, April
1999, pp. 38-47.

Mueller-Glaser, K. D., Lehmann, G., Wunder, B. (1996).
Basic Concepts for an HDL Reverse Engineering Tool-
Set. 1996 International Conference on Computer-Aided
Design (ICCAD '96), Germany, November 1996, 0134,

Muller, H. A., Jahnke, J. H., B. Smith, D. B. Storey, M. A.
Tilley, S. R., and Wong, K. Reverse Engineering: A
Roadmap.

Prinetto, P, Vietti, R., Rudnick, E. M., Como, F., Ellis, A.
(1998) Fast Sequential Circuit Test Generation Using
High-Level and Gate-Level Techniques. Design
Automation and Test in Europe, February 1998, pp. 570.

Stogdill, R. C. (1999) Dealing with Obsolcte Parts. (1999)
LEEE Design and Test of Computers, April 1999, pp. 17-

29,

