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Abstract

This paper presents an efficient system for recovering the structural properties of objects with un-
known 3-D shape. In this approach, we build adaptive maps for interpreting the object structure
under uncertainty. We decompose the system into four major modules: sensing interface, knowl-
edge base, map building and decision making, and the controller. The sensing interface acquires
visual data and performs low and intermediate vision tasks for enhancing the acquired image
seqiences. The knowledge base contains different visual primitives and the possible exploratory
actions. The map building and decision making module utilizes the different predicates that are
stored in the knowledge base in order to resolve possible uncertainties. The decisions made in
the map building and decision making module are then utilized by the controller module which
resolves possible inconsistencies. The above process is repeated until the map stored in the third
module contains a minimal number of three dimensional interpretations that cannot be reduced
further. Motion primitives are used as sensing actions. Uncertainty models are developed for
the sensor and for the image processing techniques being used. Further filtering and a rejection
mechanism are then developed to discard unrealistic motion and structure estimates. This system
is capable of recognizing the object structure efficiently and adaptively.

1 Introduction

We address the problem of recovering the structural properties of three-dimensional objects. We
emphasize in this work the recognition of polyhedra-like objects, our system can be easily extended
to general surfaces. The idea of active sensing [13,14] is utilized by the approach used in building
the system. A sequence of images is acquired by a camera mounted on a robot arm, the movements
of the sensor (the camera) is guided by the interpretation of the previously acquired sensor inputs
throughout the sequence. We build a set of “maps” that are adaptively updated using an existing
knowledge base and the sensor inputs. Sensing actions are stopped when a coherent map that cannot
be further reduced or improved is built.

The system consists of four basic modules, as depicted in the figure. The sensing interface acquires
the images using the camera and also performs some basic low and intermediate level vision tasks.
Those tasks include segmenting the image into meaningful surfaces, also our system uses motion
primitives in order to recover the structural properties, thus the interface performs the optic flow
detection for the relevant surfaces. The interface produces enhanced image sequences and other data
that are to be used by the next module, which makes exploratory decisions and constructs the 3-D
properties of the viewed object.

The map building and decision making module constructs the 3-D model of the viewed object and
is responsible for deciding the next sensory actions, which are mostly exploratory movements. The
knowledge base is to be consulted and updated periodically by the map building module to decide on
the following actions. Some learning patterns are passed to the knowledge base in case the observer

386 / SPIE Vol. 1615 Machine Vision Architectures, Integration, and Applications (1991) 0-8194-0752-6/92/54.00



registered a new 3-D pattern that is not anticipated or expected in the knowledge tree. The controller
module transforms sensing actions generated by the decision module into a set of allowable three
dimensional positioning vectors for the observer’s camera. Physical limitations due to the precision
and reachability capabilities of the observer’s robot arm are resolved and overcome by this module.
The recognition process is stopped when the map building module decides there is no need for more
movements and that the current interpretation is the best possible one.
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The flow diagram of the suggested system

The work examines closely the possibilities for errors and uncertainties in the visual system. We
divide the problem into four major levels for developing uncertainty models. The sensor level models
deals with the problems in mapping 3-D features to pixel coordinates and the errors incurred in
that process. We identify these uncertainties and suggest a framework for modeling them. The next
level is the eztraction strategy level, in which we develop models for the possibility of errors in the
low-level image processing modules used for identifying features that are to be used in computing
the 2-D evolution of the scene under consideration and computing the image flow. In the third
level, we utilize the known geometric and mechanical properties to reject unrealistic estimates for
2-D movements that might have been obtained from the first two levels. We then transform the 2-D
uncertainty models into 3-D uncertainty models for the structure and motion of the entire scene. The
fourth level uses the equations that govern the 2-D to 3-D relationship to perform the conversion. We
also develop algorithms that could be used to solve the transformation with uncertainty efficiently
and in real time. '
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2 The Sensing Interface

The sensing interface is responsible for acquiring images through the camera and for performing some
low and intermediate level vision tasks. The module starts by segmenting the view into the possible
patches of planar surfaces, edge detection and the image histogram are utilized for this purpose,
the interface might make some movements with predetermined displacements in order to recover a
crude estimate of the depth of some points within the viewed region. The interface always stores the
previous (to the current) image in the sequence so that it can also performs a computation for the
image flow, which we discuss next.

We develop a method to recover the image flow of the scene. Our algorithm overcomes some of
the shortcomings of the existing algorithms and is accurate to a large extent. Many techniques
were developed to estimate the optic flow (the 2-D image motion vectors) [8,9,11,12], we propose an
algorithm for calculating the image flow and then we discuss a simpler version of the same algorithm
for real time detection of the moving polyhedra. The image flow detection technique we use is based
on the sum-of-squared-differences optic flow. We consider two images, 1 and 2. For every pixel (z,y)
in image 1 we consider a pixel area N surrounding it and search a neighboring area S to seek a
corresponding area in image 2 such that the sum of squared differences in the pixel gray levels is
minimal as follows :

SSD(#,9) = min

min 3 [BE(+Az,y+Ay) - E( +Az,g + Ay)f

Az, AyeEN

The image flow vector of pixel (z,y) then points from the center of N in the first image to the
center of the best match in the second image. The search area § should be restricted for practicality
measures. In the case of multiple best matches, we can use the one which implies minimum motion,
as a heuristic favoring small movements. It should be noted that the accuracy of direction and
magnitude of the optic flow determination depends on the sizes of the neighborhoods N and §.

There are three basic problems with this simple approach, one is that the sum of squared differences
will be near zero for all directions wherever the graylevel is relatively uniform, the second is that it
suffers from the so-called “aperture problem” even if there is a significant graylevel variation. To
illustrate this point, consider a vertical edge moving to the right by one pixel distance, and suppose
the N window size is 3 x 3 pixels and the S window size is 5 x 5 pixels, the squared-differences
at an edge point reaches its maximum for three directions as indicated by the vectors (in pixel
displacements); (1,0), (1,—1) and (1,1).The third problem is that the scheme will only determine
the displacement to pixel accuracy.

We solve the first problem by estimating the motion only at the polyhedra image pixels (as determined
by the two-dimensional segmentation scheme) where the intensity changes significantly. The Sobel
edge detector is applied to the first image to estimate the edge magnitude M(z,y) and direction

D(z,y) for every pixel :
M(z,y) =~ \/EZ+ E2

D(z,y) =~ tan™? (i—;)

where E; and E, are the partial derivatives of the first image with respect to z and y, respectively.
The edge direction and magnitude is discretized depending on the size of the windows N and S.

388 / SPIE Vol. 1615 Machine Vision Architectures, Integration, and Applications (1991)



The motion is then estimated at only the pixels where the gradient magnitude exceeds the input
threshold value. Motion ambiguity due to the aperture problem can be solved by estimating only
the normal flow vector. It is well known that the motion along the direction of intensity gradient
only can be recovered, then we evaluate the SSD functions at only those locations that lie on the
gradient directions and choose the one corresponding to the minimal SSD, if more than one minimal
SSD exist we can choose the one corresponding to the smallest movement, as described above. The
full flow vector can then be estimated by using the following equation which relates the normal flow
vector ¥, to the full flow vector 7.

Up = 0.7

This method works under the assumption that the image motion is locally constant. Solving the
over-determined linear system will result in a solution for the full flow. The least square error of the
system can help us to decide on the accuracy of our estimate.

To obtain sub-pixel accuracy, we can fit a one-dimensional curve along the direction of the gradient
for all the SSD values obtained. A polynomial of the degree of the number of points used along
the gradient can be used to obtain the best precision. However, for an S window of size 7 x 7
pixels or less and an N window of size 3 x 3 or so, a quadratic function is used for efficiency and to
avoid optimizational instabilities for higher order polynomials. The subpixel optimum is obtained
by finding the minimum of the function used and using the displacement at which it occurred as
the image flow estimate. To avoid probable discontinuities in the SSD values, the image could be
smoothed first using a gaussian with a small variance.

A simpler version of the above algorithm can be implemented in real-time using a multi-resolution
approach [12]. We can restrict the window size of N to 3 x 3 and that of S to 5 x 5, and perform
the algorithm on different levels of the gaussian image pyramid. A gaussian pyramid is constructed
by the successive applications of gaussian low-pass filtering and decimation by half. The pyramid
processor, PVM-1 is capable of producing complete gaussian pyramid from a 256 by 256 image in
one video frame (3 of a second). Maxvideo boards can be used for the simultaneous estimation of
image flow at all the levels of the pyramid for all the pixels. Image flow of 1 pixel at the second
level would correspond to 2 pixels in the original image, 1 pixel displacement at the third level would
correspond to 4 pixels in the original image, and so on. The level with the smallest least square
fitting error of the normal flow can be chosen to get the full flow and the motion vector is scaled
accordingly. This method is crude in the sense that it only allow image flow values of 1,2,4 or 8 pixel
displacement at each pixel, but it can be used for detecting fast movements.

The sensing interface performs some moment computations for the different planar patches in the
scene, in order to recover their 2-D orientation and positions in the camera plane. The recovered
2-D vectors, positioning and orientation of the different surface, with a label for each surface and
a crude estimation for the Z coordinate of some points is then fed into the next module. A flag
indicating that the required area to be viewed is not viewable might be passed from the controller
module and should be reported to the map building module. The sensing interface uses the 3-D
positioning vector supplied by the controller module to position the camera.

3 The Knowledge Base

This module interacts with the map building and decision making module. The decision module
consults the knowledge base in order to construct the 3-D model of the viewed object. The knowledge
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base stores information about different 3-D solid models in a knowledge tree. Each node in the tree
contains a primitive description of an incomplete model, each branch represents a rule concerning
junctions and the possibility of viewing a specific feature following the observation of a parent feature,
and each leaf represents a 3-D object model. When the knowledge base receives information from
the map building module ( such as 3-D orientations and how the scene was recognized from a specific
position) it tries to find the intermediate node that matches best ! the visual information.

Then, it constructs the actions to be sent to the decision and map building module by using the
different rules stored in the knowledge tree branch of the current node, and the sensor parameters.
These actions might be qualitative ones like :

move_up, move_down, move_right, move_left, move_forward, rotate_direction.

The sensor parameters include the focal length, the viewing angle, and the other camera parameters,
also it includes the link lengths of the manipulator arm. The map building module processes those
actions and sends new information as learning patterns to create more intermediate 1 leaf nodes in
the knowledge base tree and more branching rules. Both the map building and the <nowledge base
modules interact until a 3-D object model is achieved. The map building module can update the
knowledge base tree when it finds an object that was not stored in the knowledge base tree before.

4 Map Building and Decision Making

The map building and decision making module receives the “refined” sensory data from the sensing
interface and interacts with the knowledge base in order to construct a solid 3-D model for the
viewed object. It uses the 2-D positions, orientations and velocity of the scene to decide what are
the features that it should be looking for, or in other words, which unexplored area should it try
to view next. In the knowledge base tree, a list of possible 3-D structures are stored with priority
vectors attached to each one, the knowledge base uses the data from the decision module and tells
it where is the place that it should be exploring next. The decision module passes to the knowledge
base a set of 3-D structure parameters for the different segments. Next, we elaborate on the method
we use to recover the 3-D parameters from the 2-D vectors supplied by the sensing interface.

This problem of recovering scene structure and the camera motion relative to the scene has been one
of the key problems in computer vision. Many techniques have been developed for the estimation of
structure and motion parameters [2,6]. A lot of existing algorithms depend on evaluating the motion
parameters between two successive frames in a sequence. However, recent research on structure and
motion has been directed towards using a large number of frames to exploit the history of parametric
evolution for a more accurate estimation and noise reduction [3,5,7,15].

We describe an efficient system for recovering the 3-D structure of the polyhedra from an evolving
image sequence. The suggested technique utilizes the image flow velocities in order to recover the
3-D parameters. We develop an algorithm for computing the 3-D parameters given two successive
image frames. The solution is then improved by using a large number of image frames and exploiting
the temporal coherence of 3-D motion. The optical flow at the image plane can be related to the
3-D world, by using the stationary-scene/moving-viewer formulation as indicated by the following
pair of equations originally derived by Longuet-Higgins and Prazdny [1], for each point (z,y) in the
image plane :

'If it finds more than one node, it chooses one of them at random or according to a pre-specified Bayesian decision
rule and pushes the other nodes in stack. It continues exploring that node until it can reach an object interpretation,
otherwise, it starts exploring the nodes in the stack
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oo = {2% - %) 4 [oyx — (14 2%) Qy +402]
V;

vy = {yyf‘ - —}} +[(1+9?) Qx — 2yQy - 2Q7] ,

where v, and v, are the image velocity at image location (z,y), (Vx,Vy,Vz) and (Qx,Qy,0z)
are the translational and rotational velocity vectors of the observer, and Z is the distance from the
camera to the object.

For planar surfaces, the Z function is simply pX + qY + Z,, where p and ¢ are the planar surface
orientations. Differential methods could be used to solve these equations by differentiating the flow
field and by using approximate methods to find the flow field derivatives. The existing methods for
computing the derivatives of the flow field usually do not produce accurate results. Our algorithm
uses a discrete method instead, i.e, the vectors at a number of points in the plane is determined and
the problem reduces to solving a system of equations, a pair of equations represents the flow at each
point as follows :

YZX-) + [zny - (1 + x2) Qy + yﬂz]

o

V.
v, =(1-pz —qy) (s -
—35) +[(1+ %) Qx - 290y — 20y

o

vy = (1-pz — qy) (v

o

Using the latest solution obtained from the two-frame analysis in an iterative scheme as the initial
condition for the next two-frame problem in the image sequence would further decrease the complex-
ity, as the next set of parameters would, most probably, be close in values to the current parameters,
thus the number of iterations needed to converge to the new solution would decrease significantly.

The system’s solution is better for a large number of points that are evenly distributed throughout
the planar surface, than it is for clustered, smaller number of image points. The ordinary differential
equations that describe the evolution of motion and structure parameters can be used to find the
expression for the expected parameter change in terms of the previous parameter estimates. The
expected change and the old estimates are then used to predict the current structure parameters.

At time instant ¢, the planar surface equation is described by

Z:pX+QY+Zo

To compute the change in the structure parameters during the time interval dt, we differentiate the
above equation to get

dZ  dX _dp dY _dq dZ,
a - PatiXutieagtYata

The time derivatives of (X,Y, Z) in the above expression are given by the three components of the
vector —(V 4+ € x R) that represent the relative motion of the object with respect to the camera.
Substituting these components for the derivatives and the expression pX + qY + Z, for Z we can get
the exact differentials for the slopes and Z, as
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dZ, = Z,[(y + Vx)p— (x — Vy)qg — Vz]dt
dp = [p(Qyp — Uxq) + (Qy + Qzq)] dt
dg = [¢(Qyp — Qxq) — (x + Qzp)] dt

Using the above relations, we can compute the new structure parameters at time ¢ + dt as
P=p+dp, §=q+dg and Z, = Z,+dZ,

Thus the slope parameters evolve at time ¢ + dt as follows :

p] _[p Qyp— Qxq Qz QY] P dt
L] = 18]+ [ ™76 avnaxe 3] |

Our first multi-frame algorithm uses a weighted average of the expected parameters at time ¢+dt from
the above equations and the calculated parameters using the two-frame iterative algorithm as the so-
lution at time ¢+ dt, and continues in the same way until the end of the frame sequence. Thus it keeps
track of the past history of parametric evolution. We further develop the first multi-frame algorithm
to exploit the temporal coherence of 3-D motion. We develop the ordinary differential equations
which describe the evolution of motion and structure in terms of the current motion/structure and
the two-dimensional flow vectors in the image plane. We assume that the 3-D motion is piecewise

uniform in time, i.e, & = V = 0. We then use the equations expressing the time derivative of the
slope derived above and utilize the extended Kalman filter to update the solution of the differential
equations. The filtering mechanism is applied to each surface in the scene, which can be implemented
in parallel.

The current 3-D parameters are used, in conjunction with the estimates of the surfaces viewed at
previous steps, to build a solid 3-D for the viewed part of the object until the current time instant
and then used to check the knowledge base to decide which part, we should probably view next. If
a new pattern is recognized, it can be used to add more leaves and/or intermediate nodes to the
base to help in future recognition processes. If the map (solid model) developed can be no longer
improved, either due to the fact that it actually matches something in the knowledge base, or due
to the fact that we can’t view the required part or any subsequent areas of the scene (which can be
indicated by a set of flags passed by the sensing interface) then the recognition process is stopped
and the current map is returned as the best possible model.

5 Uncertainty Modeling

In this section we develop and discuss modeling the uncertainties in the recovered 2-D displacement
vectors. There are many sources of errors and ways to model uncertainties in image processing. As
mentioned in the section describing techniques for recovering the image flow, the uncertainty in the
recovered values results from sensor uncertainties and noise and from the image processing techniques
used to extract and track features. When dealing with measurements of any sort, it is always the
case that the measurements are accompanied by some error. Mistakes also occur, where mistakes
are not large errors but failures of a system component or more.
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5.1 Sensor Uncertainties

In this section we discuss errors in image formation. The camera is used to grab and register images
of the scene, so we need to know errors in mapping from the 3-D world features to the 2-D domain
which we use in forming 3-D hypothesis about the scene under supervision. The accuracy, precision
and modeling uncertainty of the camera as our sensor is an important issue and the first step towards
forming a full uncertainty model for recovering the 3-D models.

As alot of the image processing algorithms compute derivatives of the intensity function, noise in the
image will be amplified and propagated throughout the imaging process. The goal of this treatment
is to find a distribution for the uncertainty of mapping a specific 3-D feature into a specific pixel
value. In other words, if the feature 2-D position was discovered to be (2, ), then the goal is to find
a 2-D distribution for ¢ and j, assuming that there is no uncertainty in the technique used to extract
the 2-D feature, the technique’s uncertainty will be discussed in the next section. The end product of
modeling the sensor uncertainty is to be able to say a statement like : “The 3-D feature F is located
in the 2-D pixel position (¢,j) with probability p; or located in the 2-D pixel position (,7 + 1) with
probability p; or .... given that the registered location is (I,m), such that p; + p2 + ..... +pn=1,
and A error in the 2-D feature recovery mechanism.”

5.1.1 Image Formation Errors

The errors in the image formation process are basically of two different kinds. The first type is a
spatial error, the other type is a temporal error. The spatial error due to the noise characteristics of
a CCD transducer can be due to many reasons, among which are ‘dark signatures and illumination
signatures. The technique to be used is to take a large number of images, we can denote the image
intensity function as a 3-D function I(u,v,t), with spatial arguments u and v and temporal argument
t. The sample mean of the image intensities over N time samples can be denoted by I(u,v).

- 1 Y
I(u,v) = -NZI(u,v,t)
t=1

The spatial variance in a 5 X 5 neighborhood of the means is computed by:

2 2
s(u,v) = D> Y T(u+i,v+j) - I(u,v))?

1=—235=-2

The dark signature of the camera can be determined by computing I(u,v) of each pixel with the
lens cap on. It will be found that a small number of pixels will have non-zero mean and non-
zero variance. The specific pixel locations are blemished and should be registered. The uniform
illumination is computed by placing a nylon diffuser over the lens and computing the mean and
variance. It will be noticed that due to digitizing the CCD array into a pixel array of different size,
and the difference in sample rates between the digitizer and camera, the border of the image will
have different mean and variance from the interior of the-image. Some “stuck” pixels at the location
of the blemished pixels will also be noted. The contrast transfer function will also be noted to vary
at different distances from the center of the lens.

Temporal noise characteristics can also be identified by taking a number of experiments and notice
the time dependency of the pixels intensity function. In our treatment and for our modeling purposes
we concentrate on the spatial distribution of noise and its effect on finding the 2-D uncertainty in
recovering a 3-D feature location in the pixel array.
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5.1.2 Calibration and Modeling Uncertainties

Methods to compute the translation and rotation of the camera with respect to its coordinates, as
well as the camera parameters, such as the focal length, radial distortion coefficients, scale factor
and the image origin, have been developed and discussed in the literature. In this section we use
a static camera calibration technique to model the uncertainty in 3-D to 2-D feature locations. In
particular we use the sequence of steps used to transform from 3-D world coordinates to computer
pixel coordinates in order to recover the pixel uncertainties, due to the sensor noise characteristics
described previously.

A sequence of computational steps can be used for a coplanar set of points in order to obtain the
rotation and translation matrices, in addition to the camera parameters. The input to the system
are two sets of coordinates, (Xy,Y), which are the computer 2-D pixel image coordinates in frame
memory and (T, Yuw, 2w ), Which are the 3-D world coordinates of a set of coplanar points impressed
on a piece of paper with known inter-point distances.

Our approach is to treat the whole camera system as a black box and make input/output measure-
ments and develop a model of its parametric behaviour. The next step is to utilize the recovered
camera parameters and the number of 3-D points which we created in order to formulate a distribu-
tion of the 2-D uncertainty.

The strategy used to find the 2-D uncertainty in the features 2-D representation is to utilize the
recovered camera parameters and the 3-D world coordinates (z,, Y, 2,,) of the known set of points
and compute the corresponding pixel coordinates, for points distributed throughout the image plane
a number of times, find the actual feature pixel coordinates and construct 2-D histograms for the
displacements from the recovered coordinates for the experiments performed. The number of the
experiments giving a certain displacement error would be the z axis of this histogram, while the
z and y axis are the displacement error. Different histograms can be used for different 2-D pixel
positions distributed throughout the image plane. The three dimensional histogram functions are
then normalized such that the volume under the histogram is equal to 1 unit volume and the resulting
normalized function is used as the distribution of pixel displacement error, thus modeling the sensor
uncertainty. The black box approach is thus used to model errors in a statistical sense.

5.2 Image Processing Uncertainties

In this section we describe a technique by which developing uncertainties due to the image pro-
cessing strategy can be modeled. In addition, we end the discussion by combining both the sensor
uncertainties developed in the previous section and the models developed in this section to generate
distribution models for the uncertainty in estimating the 2-D motion vectors. These models are to
be used for determining the full uncertainty in recovering the 3-D structure and motion.

We start by identifying some basic measures and ideas that are used frequently to recognize the
behaviour of basic image processing algorithms and then proceed to describe the technique we use
in order to compute the error model in locating certain features from their 2-D representation in the
pixel array. We concentrate on modeling the error incurred in extracting edges, as edge extraction
is a very popular mechanism that is used for both identifying feature points and also for computing
2-D contours of the object under supervision. When we discussed flow recovery techniques before, it
was discussed in details that the optic flow recovery algorithm using local matching works well for
the intensity boundaries and not for the inside regions.
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5.2.1 Edge Extraction Uncertainties

Edge extraction strategies and methods to evaluate their performance qualitatively and quantatively
have been presented and discussed in the literature. There are many types of edges, ideal, ramp
and noisy edges are only three of them. Different curvatures in the edges also constitute another
dimension to be taken into consideration when it comes to asserting the types of edges that exist.

The goal of developing the error models for edge extraction to to be able to say a statement like :
“Given that the 2-D feature recovered using the edge recovery S is in pixel position (z,y), then there
is a probability that the feature was originally at pixel position (z + 1,y) with probability p; or ....
etc. due to the noise in the pixel image, such that p; + p2 + .... + p, = 1.” The problem is to find
the probabilities.

It should be obvious that there may be different types of noises and also different levels of those types
that might vary at different locations in the sensor image plane. This adds to the different models
that we might have to construct. Our approach is to use ideal, that is, synthesized edges of different
types, locations and also orientations in image frames then corrupt them with different kinds and
levels of noises. We know the ideal edge points from the ideal image, for which we shall use the edge
detector that is to be used in the experiment. The corrupted images will then be operated upon by
the detector and the edge points located. The edge points will differ from the ideal image edge points.
The problem reduces to finding corresponding edge points in corrupted and ideal images then finding
the error along a large number of edge points. A 2-D histogram is then constructed for the number
of points with specific displacement errors from the ideal point. The volume of the histogram is then
normalized to be equal to 1, the resulting 3-D function is the 2-D probability density function of the
error of displacements.

5.2.2 Computing 2-D Motion Uncertainty

In this section we describe how to combine sensor and strategy error models to compute models for
the recovered image flow values. To simplify the idea, let’s assume that we have recovered a specific
feature point (r1,y1) in an image grabbed at time instant ¢ and the corresponding point (z2,y2)
at time ¢t + 1. The problem is to figure out the distribution of v;. As an example, to explain the
procedure, let’s assume that from the 3-D sensor distribution we have have computed the marginal
density function of the x coordinate of z; in the point:

fx(z) = /R fxy(z,y)dy

where R is all the possible y values within the sensor uncertainty model.

The same process is applied for the strategy distribution and another function is recovered. To
simplify things, lets assume that for both distributions there is an equal probability equal to % that
the x coordinate is the same, or shifted one position to the left or the right. Combining the spatial
information of both distributions as a convolution process would produce a triangle-like distribution,
which is the error probability density function of having the 3-D feature z 2-D coordinate in the
recovered image 2-D z position. Further more, assume that z, distribution is the same.

The problem reduces to finding the distribution of the optic flow z component, using these two
combined distributions. As an example, if z; = 10 and z, = 22, then all probability statements can
be easily computed, a set of some of these probability statement is shown :

P(v; = 8)=P((z1 = 12) A (z2 = 20))=4 x 1=
P(v; = 9)=P(((z1 = 12) A (22 = 21)) V (21 = 11) A (2 = 20)))=(§ x §) + (§ x §)=51
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P(v; = 10fz; = 10)="5 e =2y =g

Consequently, all distributions and expected values can be computed from the combination of the

sensor level and strategy level uncertainty formulation. Those flow models are then passed to the

higher levels for 3-D recovery. In the next section we discuss a method for refining the measured 2-D
motion vectors and we then proceed to formulate the 3-D uncertainty modeling of parameters.

5.3 Refining Image Motion

In this section we describe a method to refine the recovered 2-D motion vectors on the image plane.
Having obtained from the sensor and extraction strategy uncertainty levels distribution estimates
for the image flow of the different features, we now try to eliminate the unrealistic ones. Faulty
estimates can results from noise, errors or mistakes in the sensor acquisition process and/or visual
problems like occlusion, modeling the uncertainties in the previous two levels may still leave room
for such anomalies.

We can assume that the features to be tracked lie on a planar surface or that segmenting the objects
as polyhedra is simple, although the modification would be very simple to allow for arbitrary 3-D
positions of the feature distribution. Since we might know a-priori some information about the
mechanical capabilities and limitations and geometric properties of the system under observation,
also about the rate of visual sampling for the camera, since we actually control that, we might be
able to assert some limits on some of the visual parameters in our system.

We know equations that govern the behaviour of the image flow as a function of the structure and
3-D motion parameters, as follows :

vy = (1 - pz — qy) (x% - %) + [zyQX - (1 + 1:2) Qy + yQZ]

o

_ Vz _ W 2
vy = (1 - pz - qy) (yZ —Z) + [(1+y )Qx —zyQy —JJQZ]
Which are second degree functions in z and y in three dimensions, v; = fi(z,y) and vy = fo(z,y).

In addition, we know upper and lower limits on the coefficients p, q, Vx, Vy, Vz, Qx, Qy, Qz and
Z,, as we might know some of the mechanical abilities of the system being observed. So the problem
reduces to constructing the three dimensional envelopes for v; and v, as the worst case estimates for
the flow velocity and rejecting any measured values that lie outside that envelope.

As an example, we write the equation governing the maximum v, value in the first quadrant of the
z — y plane (z*,yt).

V.
vp = (_f X, an) + (ﬁ + maw(PIVX‘,Pst,)) z+ (maz(fJIVx,,quxs) 4 QZ,) y
Zos Zos Zos Zos

Qx, min(qVz,,q:Vz) min(piVz,,psVz)  Qv,\ 2
+ < l _ s 1 ) T _ ( s 1 + _8) T
7 fZ,, Y fZ., f

where the subscripts s and ! denote lower and upper limits, respectively. At first sight the problem
of determining the maximum value of v, seems to be a constrained non linear optimization problem,
which is true, however, assuming that the upper and lower limits of the coefficients are equal in
magnitude and opposite in directions (except for Z,, which is used only as Z} ) makes the input to
the maz and min functions in the above equations always equal and thus providing one more degree
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of freedom in choosing the parameters and making the choice consistent throughout the equation.
Thus the problem becomes simply to write eight equations as the above one for each of v; and v,,
to draw the function in each of the four quadrants for maximum and minimum envelopes. It should
be noted that the maximum absolute possible value of the image flow is minimal at the origin of the
camera image plane and increases quadratically as the distance increases from the center.

5.4 Recovering 3-D Uncertainties

Having discussed methods for computing the three dimensional motion vectors and structure param-
eters between two image frames, we now use the same formulations described earlier for 3-D recovery
but using 2-D error distributions as estimates for motion and/or feature coordinates in order to
compute 3-D uncertainty distributions for the real world motion vectors and structure instead of
singular values for the world parameters.

As an example to illustrate the idea, let’s assume a linear system of equations as follows :

T+3y==2
20+ y = 2
The solution of this system is very easily obtained as :
3 1
T==2g— =2
5727 57
= 22 lz
y= 571 T %2

That is, a linear combination of the right hand side parameters. If the parameters z; and 2, were
random variables of known probability distributions instead of constants, then the problem becomes
slightly harder, which is, to find the linear combination of those random variables as another random
variable. The obvious way of doing this would be to use convolutions and the formula :

Px,+x,(y) = ZPXth(z’y - z)
R

for the sum of two random variables X;, X, for any real number y and/or the formula for linear
combinations over the region R, which is for all z such that Px, x,(z,y —z) > 0. Using the moment
generating function or the characteristic function seems also to be a very attractive alternative. The
moment generating function M of a linear combination of random variables, for example X;, X3 can
be written as :

Max, +bx+(t) = e (Mx, (at) Mx, (b))

for independent random variables X, X3. That is, the problem of solving linear systems on the form
Az = b, where b is a vector of random variables, may be reduced to finding closed form solutions for
T in terms of the random parameters (using any elimination technique) and then manipulating the
results and finding different expectations using moment generating or characteristic functions.

The solutions we suggest to this problem of finding the random variable solution of the 3-D parameters
utilize the techniques we described in the previous two subsections. Using either a two-frame iterative
technique or a closed form algorithms, it should be noticed that the problem reduces to either solving
multi-linear systems or a single one. In that case, using elimination and characteristic functions for
computing the required expectations and distributions is straight forward.
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6 The Controller

The controller module utilizes the decisions made in the map building and decision making module
to decide upon the optimal next position for the observer. Based upon the sensor parameters and
precision and the robot arm capabilities and reachability, the controller solves the inverse kinematics
problem and supplies a configuration vector to the robot arm and also a set of flags to indicate
the impossibility of reaching a specific sensing position, if that is what the decision module output
implies.

The controller should use the information received from the decision module to decide whether the
computed sensing parameters will cause future problems for the expected set of viewing positions.
The controller produces quantitative entities based on qualitative entities supplied by the decision
module. Zooming, focusing, thresholding level and window sizes decisions should be made by the
controller too and passed to the sensing interface along with the position vector and any other
information relevant to the sensing process.

7 Conclusions

We have discussed an efficient system for recovering the structural properties of 3-D objects. The
system builds models as the sensing process goes on, guided by a knowledge base of possible interpre-
tations that is updated during recognition. We utilize motion primitives for recovering the structure
of surfaces. The system could be expanded by allowing for general surfaces and using other shape
from X modules, as ways of updating structures, shape from stereo, shading, contours, textures
and/or an integrated version of some or all can be used for robustness. Other sensing devices can be
used and a scheme could be implemented for combining the information from different sensors and
supplying the refined data for consulting the knowledge base efficiently. Subsequently, the controller
module will have to control in a distributed way the different sensors so that to obtain maximum
information at a low cost of operating the sensors during a specific period of time. Uncertainty in
the sensor data could be studied to allow for the low cost - accurate recognition of different objects
using the proposed system.
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