Automated Tolerance Specification Across Sensing, Design,
and Manufacturing

Tarek M. Sobh, Thomas C. Henderson, and Frédéric Zana

Department of Computer Science and Engineering
University of Bridgeport
Bridgeport, CT 06601, USA

Abstract

In this work we address the problem of tolerance representation and analysis
across the domains of industrial inspection using sensed data, CAD design,
and manufacturing. Instead of using geometric primitives in CAD models to
define and represent tolerances, we propose the use of stronger methods that
are completely based on the manufacturing knowledge for the objects to be
inspected. We guide our sensing strategies based on the manufacturing process
plans for the parts that are to be inspected and define, compute, and analyze
the tolerances of the parts based on the uncertainty in the sensed data along
the different toolpaths of the sensed part.

Keywords: Tolerance, Manufacturing, Sensing, Inspection, Industrial Design

1 Introduction

In this work we address the problem of recovering manufacturing tolerances and deforma-
tions from the uncertainty in sensing machine parts. In particular, we utilize the sensor
uncertain y to recover robust models of machine parts, based on the probabilistic measure-
ments recovered, for inspection applications. We design and implement a spline-based model
that captures manufacturing tolerancing based on uncertain sensed data and knowledge of
possible manufacturing process plans.

2 Background, Motivation, and Methodology

We propose toolpaths with tolerances as an instance of the manufacturing process (process
plan) that provides a unifying approach to dealing with tolerance and sensing issues across
design, manufacturing and inspection. The use of interval Bezier curves for a complete
description of approximation errors was proposed by Sederberg and Farouki[5] (see paper
for details). The basic idea is to extend splines to polynomials whose coefficients are intervals
with well defined arithmetic operations. Such splines define a region in space rather than a
curve. This not ion captures very nicely the semantics of a tolerance specification. We have
developed interval curves for both 2D and 3D and algorithms based on interval splines for
machine toolpath representation.

Given the CAD geometry for a part, a tolerance specification, and a class of NC mill
to be used, then generic knowledge about such mills can be used to generate a desired
toolpath with its associated tolerance (call it T'P4. Once a specific mill is selected, then
the nominal toolpath from TP, together with the accuracy of the mill determine the actual
toolpath (call this TP, These two toolpaths allow us to determine a great deal about the
efficiency and uncertainty regions of the process. First, if TP, ¢ TPy is true, then we

))© 1998 TSI P
Albuquerqu:l:\slsM USA ISOMA'039.1

ISOMA-039.2

know that the tolerance should, in principle, reachieved. If TPy — TP, is large, then the
selected machine may be too precise, and therefore, too expensive. If the boundary of TP,
is close to that of TPy, this signals places where sensing may be necessary to guarantee
the inclusion relation. This also gives insight into how accurate the sensing needs to be.
Even if TP, is not contained in TPy, this approach allows us to estimate what percentage
of milled parts will be out of spec, and thus an informed decision can be made whether to
tighten the accuracy of the machine, or where to sense with high probability of part error.
Thus, the toolpath representation allows insight into design, manufacture and inspection in
a common framework.

3 Interval Splines and Generalization: Checking that all points
reach the tolerance goal

3.1 Interval Splines

The use of interval Bézier curves for a complete description of approximation errors was
proposed by Sederberg and Farouki[5]. The basic idea is to extend splines to polynomials
whose coefficients are intervals with well defined arit hmet ic operations. Such splines define
a region in space rather than a curve. This not ion captures very nicely the semantics
of a tolerance specification, especially when it is generalized in 3D: if the assumption is
made that the sensing error is Gaussian, then it can be described it by an ellipsoid around
each sensed point (using a step value). Thus, along a sensed toolpath, an offset surface is
produced (see [3]). We have only assumed that the enclosing envelopes are described by
ellipses in planes orthogonal to the toolpath. Hence our algorithm allows for representing
volumetric error and can easily be extended to other shapes than ellipses - which means
different offset surfaces. This approach will require the ability to answer the question: is
one ellipse inside the other one ? as fast as possible - when they are in the same plane.
The final test will be to check the reliability of the proposed algorithm on real sensed data,
along manufacturing toolpaths on parts that are inspected.

The algorithm uses a property that is associated with curves of the same degree, which
is the basis of interval splines. Since a Bézier curves of degree k is deduced from the control
point by the recursive equation (see [4]):

P(t) = B (j-k<i<y)
andfor0<r<k-1
Bt = Wi+ (1 —)P, (t)
when j~k+r <1<y

PE@) = s(t).

For curves of same degree, if the corresponding control points are on a line (resp. on a
plane), then during this recursive process each corresponding p:(t) will also be on a line
(resp. on a plane), hence for all ¢ the different evaluations (Si (t), S2(t) . ..) will give points
on a line (resp. on a plane). An easy way to ensure that the control points are on a line is to
have initial points on a line too, since the control points are deduced by a linear operator.

3.1.1 2D Interval Splines

In our 2D representation, an interval is a set of 3 points (corresponding to the nominal point
and two bounds). The spline interpolation is done (on 6 consecutive points) separately on
each of the 3 corresponding curves (see Figure 1). Note that evaluation at any parameter
t € [0, 1] yields 3 points on a line.

As indicated above, the determination of inclusion of one interval spline within another
is important. Figure 2 shows the case where inclusion is true.

We have developed a technique to answer this question (see section 3.2.2). Moreover, if
one interval contains another, then the 2-D difference of the two intervals is also possible
to determine.

ISOMA-039.3

Figure 1: One Interval Spline

1NN

Figure 2: TP, C TDy

3.1.2 3D Interval Splines

In 3D, we've assumed that the uncertainty around a point is described by an ellipse (in the
plane normal to the curve). Thus, we also use 3 points to describe the ellipse (X for the
nominal point, and X; and X2 the two extreme points along the two axis of the ellipse). The
problem reduces to determining whether one ellipse is inside another. We have developed
an algebraic solution to this problem (see section 3.2.3).

3.2 Description of the Algorithm

There is no significant difference between the 2D and the 3D algorithm, except for the part
that compares two intervals (resp. two ellipses). Both algorithms use a procedure to check
if the interval spline from the sensing device (We used a GRF-2 light stripper scanner) is
inside the interval spline of the allowable tolerance model.

3.2.1 Common part

To verify that one interval spline is inside another, the following three steps are used:

1%%: Putt ing the parameters of the 2 salines together:
We want to ensure that for all ¢ the two corresponding intervals are on the same line (resp.
in the same plane, for ellipses). We implement a divide and conquer algorithm, using the
sign of:

z(t) T1 T2

det | y(t) Y1 Y2
1 1

1
or (in the 3D case)

z(t) T1 T2 z3

y(¢) v Y2 y3 ISOMA-039.4
det | z() 21 22 23
1 1 1 1

Figure 3: Included Interval Spline

Those two determinants are the equations of the lines (or the plane where the ellipse lies)
that correspond to one interval spline, thus the algorithm cuts the second interval spline to
redefine it (the determinant utilizes the initial points used to define the first interval spline
at the beginning). So there is no need to have two interval splines of same degree at the
beginning, since the second one is completely rebuilt (with the same degree, and control
points on the same line or plane as the first interval spline). See figure 3 where I = (a, b, c)
cuts the interval spline I1in d, f and e to define a new interval: with classical methods,
that have to be done (see [6]).

ond: Compare as many intervals as possible.
Now that the intervals came together, this part is computable in O(n) where n is the number
of points on a spline (resp. ellipses).

34 When 2™ fails, check if it's an ending
If not, then the inclusion fails. This check has to be made as both-splines do not necessarily
begin or end at the same time.
To check an ending, the methods in 2D and 3D are very similar. The method utilizes the
fact that the sign of the determinant of vectors gives the orientation of such a frame -
when it is compared to the canonic frame. Hence, comparing two determinants can decide
whether two points are on the same side of a line or a plane. See figure 4 for the 2D vectors.

Figure 4: Two Interval Splines

For example, in 2D the signs of det(V, V1) and det(V, V2) are compared. A same sign
means the points are on the same side.

ISOMA-039.5

Figure 5: How to compare two intervals that are not necessarily parallel

3.2.2 Comparing two intervals

Here we check to ensure that O < V.V; <||[V||2 (i = 1, 2), and to check the angles between
the vectors (V,V;) (¢ = 1,2) (see figure 5).

3.2.3 Algebraic Solution to Ellipse Inclusion

If the two ellipses do not intersect and if the center of one is inside the other, then one is
contained by the other one. For the intersection of ellipses, we have developed an algebraic
solution using the St urm Theorem (see [1] or [2] for more details).

We assume that the implicit equation of the ellipse with center X, and which go through
the extreme points X7 and X2 (assumed to be along the 2 orthogonal axis, but it is not
necessarily the case along the curve) is given by the following:

take 171=)?i‘:)){(and ‘7'2 = ",'()?—;ﬂ%y then:
M € ellipse <= (XM.V})? + (XM.B)? =1

We also also assume that the second ellipse has the following parametric equation (same
approximation):

_ t)
f 4
1+t2XX 1+t2 e X

substituting this point in the implicit equation of the other ellipse gives the following poly-
nomial of degree 4:

M(t) =x +

XXV + XXV, + (1 — XX)2

HXX'Vo + XXV + (1- 2)X5X"Th)2 = (1+¢2)?

The real roots - if they exist — realizes up to 4 points of intersection of those 2 ellipses,
The Sturm theorem on polynomials suggests an algorithm to find the number of roots of
any polynomial. If this algorithm is applied on a polynomial with symbolic variables as its
coefficients, one can get a condition that determines when (and only when) the polynomial
has a real root. If this is performed on the polynomial X* + aX? + bX + ¢ we find!:

I‘ 2a3 - 8ac + 9b?
16a*c — 4a3b® - 128a2¢? + 144ab’c

—27b% 4+ 256¢3

*result taken from the course “geométrie semie-algébrique” from Professor Coste (Universit y of Rennes,
France), DEA IMA.

X%+ aX?+bX + ¢ has no real roots if and only if ISOMA-03
(a>0and A>0)or(a>0and'=0)or (a<0and T >0and A > 0)

If the polynomial X*+dX? is viewed as the beginning of the expansion of (X + a)t
then one can see that an appropriate translation transforms any degree 4 polynomial into
a polynomial T* + aT? + bT + ¢ with T = X — a. For our problem, the resulting values of
a,b and c are given by the equations:

Al = —X5X'.V, B = 2X{x'V,
Ay = —X5X'.Va By = 2XIX'\Vy

C = (XX’ + XIX")V, Gy = (XI'+ XiXx").V;
A=,/A? + A2 B = /B} + B}
C =,/C?+C?

then P(2) = eqt? + 3t + eat? + a1t + co with

&k

cg=A"-1 c3 = 2(A1 By + AzBy)
Cy = 32 + 2(A101 + A202 - l)
c1 = 2(B,C, + B2Cs) p=C0%-1
and finally, we can find @ and then a,b and c:
o g = 2= bud
T 4eq c4
b= c1 - 4c4a® — 20(ca — 6eg0?)
C4
c= O - caat + a?(cy — 6cga?) — aler — 4eqad)
c4

4 Experimental Results

The algorithm was tried on real sensed data, from the GRF-2 scanner, along a toolpath
from a manufactured cover plate pocket. Figure 6 shows the part under inspection. Figure 7
includes range data from the scanner for the pocket in the cover plate. Figure 8 shows a
CAD model for the pocket.

Figure 6: The machine part under inspection

The scanner was not very accurate, so first we recognized pieces of lines and arcs out
of the noisy points from the scanner and defined those as our nominal curve. This is not a
bad approximation, as the NC milling machine tool actually moves only in straight line and
curve segments. For each points from the scanner we find the closest point to this nominal
curve and - eventually - increase the radius of the sphere around the nominal point to

ISOMA-039.7

Figure 7: Range data for the pocket

Figure 8: A CAD model for the pocket

include the point from the scanner. Finally, we smooth the values from the radius 40 times
and define the surface with circles orthogonal to the path. Our algorithm compares it to
the tolerance spline model, a few runs produced a good idea of the minimum specifications.
Notice that both nominal curves from the model and from the scanner are quite different
at some spatial instances, certainly because of a scale factor or a deformation from the
scanner. Accurate data from a CMM along a toolpath would produce a much more precise
input for the algorithm.

3

i e WP g

—

L} R - am e m “- ﬂll

Figure 9: The points from the scanner and the computed offset surface cutting of the inner
pocket

The figures 9 and 10 represent the inner profile, and figure 11 is the outer profile of the
cover plate pocket. For the first one, we have found that the specification tolerance radius
around the nominal curve of the model should be more than 0.12 cm. For the outer profile,
we have found that it should be more than 0.065 cm. If the design tolerances do not meet
the above requirements, then, based on the sensed data, the part should be rejected as it
does not meet the required tolerances. It should be obvious that more precise results can
be obtained with more runs. As one can see on the cross section of the outer pocket (figure
11), a few bad points can badly influence the result, specially if there is already an error
between the two nominal curves.

s v el s

A

ISOMA-039.8

1090 " Ll

2.

Figure 11: The points from the scanner and the computed offset surface: a detail of the

outer pocket

5 Conclusions

We propose toolpaths with tolerances as a unifying approach to dealing with tolerance
issues across design, manufacturing and inspection. Not only does this permit us to answer
guest ions concerning design and manufacturing processes, but also gives a way to determine
places in the process and on the part where sensing is useful to ensuring that tolerances are
met. We have developed algorithms and implemental ions based on interval splines.

References

[l] ARNON, MIGNOTTE, AND LAZARD. In Algorithms in real algebraic geometry (1988),

Arnon and Buchberger, Eds., Academic press.

|] BENEDETTI, R., AND RISLER, J.-J. In Real Algebraic and Semi-algebraic Sets (1990),

Hermann, pp. 8-19.

{3] BRECHNER, E. L. General offset curves and surfaces. In Geometry Processing for
Design and Manufacturing (1992), SIAM, pp. 101-121.

|4 RISLER, J.-J. In Méthodes mathématiques pour la CA O (1991), Arnon and Buchberger,

Eds., Masson.

[5] SEDERBERG, T. W., anD FAROUKI, R. T. Approximation by interval bézier curves.
In Computer Graphics and Applications (September 1992), IEEE, pp. 87-95.

[f] WaNg, K. Y. Parametric surface intersection. In Geometry Processing for Design and

Manufacturing (1992), SIAM, pp. 187-204.

