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Abstract 
We address the problem of observing a moving agent. In 

particular, we propose a system for observing a manipulation 
process, where a robot hand manipulates an object. A discrete 
event dynamic system (DEDS) frame work is developed for the 
hand/object interaction over time and a stabilizing observer is 
constructed. Low-level modules are developed for recognizing 
the "events" that causes state transitions within the dynamic 
manipulation system. The work examines closely the possibil- 
ities for errors, mistakes and uncertainties in the manipulation 
system, observer construction process and event identification 
mechanisms. The system utilizes different tracking techniques 
in order to observe and recognize the task in an active, adaptive 
and goal-directed manner. 

1 Introduction 

The problem of observing a moving agent was addressed in the 
literature extensively. It was discussed in the work address- 
ing tracking of targets and, determination of the optic flow 
(2,7,10,17], recovering 3-D parameters of different kinds of sur- 
faces [6,12,15], and also in the context of other problems [1,3,8,9]. 
However, the need to recognize, understand and report on dif- 
ferent visual steps within a dynamic task was not sufficiently 
addressed. In particular, there is a need for high-level symbolic 
interpretations of the actions of an agent that attaches meaning 
to the 3-D world events, as opposed to simple recovery of 3-D 
parameters and the consequent tracking movements to compen- 
sate their variation over time. 

In this work we establish a framework for the general problem 
of observation, recognition and understanding of dynamic vi- 
sual systems, which may be applied to different kinds of visual 
tasks. We concentrate on the problem of observing a manipula- 
tion process in order to illustrate the ideas and motive behind 
our framework. We use a discrete event dynamic system as a 
high-level structuring technique to model the visual manipula- 
tion system. Our formulation uses the knowledge about the 
system and the different actions in order to solve the observer 
problem in an efficient, stable and practical way. The model in- 
corporates different hand/object relationships and the possible 
errors in the manipulation actions. It also uses different tracking 
mechanisms so that the observer can keep track of the workspace 
of the manipulating robot. A frame work is developed for the 
hand/object interaction over time and a stabilizing observer is 
constructed. Low-level modules are developed for recognizing 

the "events" that  causes state transitions within the dynamic 
manipulation system. The process uses a coarse quantization of 
the manipulation actions in order to attain an active, adaptive 
and goal-directed sensing mechanism. 

The work examines closely the possibilities for errors, mistakes 
and uncertainties in the visual manipulation system, observer 
construction process and event identification mechanisms, lead- 
ing to a DEDS formulation with uncertainties, in which state 
transitions and event identification is asserted according to a 
computed set of 3-D uncertainty models. 

We describe the automaton model of a discrete event dynamic 
system in the next section and then proceed to formulate our 
framework for the manipulation process and the observer con- 
struction. Then we develop efficient low-level event-identification 
mechanisms for determining different manipulation movements 
in the system and for moving the observer. Next, the uncer- 
tainty levels are described in details. Some results from testing 
the system is enclosed and future extensions to the system are 
discussed. 

2 Discrete Event Dynamic Systems 

Discrete event dynamic systems (DEDS) are dynamic systems 
(typically asynchronous) in which state transitions are triggered 
by the occurrence of discrete events in the system. DEDS are 
usually modeled by finite state automata with partially observ- 
able events together with a mechanism for enabling and dis- 
abling a subset of state transitions [11,13,14]. We propose that 
this model is a suitable framework for many vision and robotics 
tasks, in particular, we use the model as a high-level structuring 
technique for our system to observe a robot hand manipulating 
an object. We can represent a DEDS by the quadruple : 

where X is the finite set of states, C is the finite set of possible 
events, U is the set of admissible control inputs consisting of a 
specified collection of subsets of C, corresponding t o  the choices 
of sets of controllable events that can be enabled and r C is 
the set of observable events. 

We can visualize the concept of DEDS by an example as in Fig- 
ure 1, the gaphical representation is quite similar t o  a classical 
finite automaton. Here, circles denote states, and events are rep- 
resented by arcs. The first symbol in each arc label denotes the 
event, while the symbol following "/" denotes the correspond- 
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ing output (if tlie event is observable). Finally, we mark the 
controllable events by “:U”. 

Figure 1 : A Simple DEDS Example 

Thus, in this example, X = {0,1,2,3}, C = {a ,P ,d} ,  I? = 
 CY,^}, and 5 is controllable at state 3 but not a t  state 1. 

Stability can be defined with respect to the states of a DEDS 
automaton. Assuming that we have identified the set of “good” 
states, E ,  that we would like our DEDS to “stay within” or do 
not stay outside for an infinite time, then stabilizability can be 
formally defined as follows : 

Given a live system A and some E c X, I E X is stabilizahle 
with respect t o  E ( or E-stabilizable ) if theie exists a state 
feedback A’ such that z is alive and E-stable in A K .  A set of 
states, Q ,  is astabilizable s a  if there exists afeedback law Zi(s) 
(a control pattern) so that every z E Q is alive and stable i n  
Ah’, and A is a stabilizable system if X is a stabilizable set. 

A DEDS is termed observable if we can use the observation se- 
quence to determine the current state exactly a t  intermittent 
points in  time separated by a bounded number of events. More 
formally, taking any sufficiently long string, s, that can be gen- 
erated from any initial state 2. For any observable system, we 
can then find a prefix p of s such that p takes I to a unzqiie state 
y and the length of the remaining suffix is bounded by some in- 
teger n,. Also, for any other string t ,  from some initial state z’, 

such that t has the same output string as p ,  we require that t 
takes z’ to the same, unique state y. 

The basic idea behind strong output stabilizability is that we 
will know that the system is in state E iff the observer state is 
a s_ubset of E .  The compensator should then force the observer 
to a state corresponding to a subset of E at inteivals of at most 
a finite integer z observable transitions. If 2 is the set of states 
of the observer, then : 

A is strongly output E-stabilizable if there exists a state feed- 
back A’ for the observer 0 such that OK is stable with respect 
t o E o  = { i E Z ( i C  E } .  

3 Modeling and Observer Construction 
Manipulation actions can be modeled efficiently within a discrete 
event dynamic system framework.We use the DEDS model as a 
high level structuring technique to preserve and make use of the 
information we know about the way in which each manipulation 
task should be performed. 

3.1 Building the Model 

We present a simple model for a grasping task. The model is 
that of a gripper approaching an object and grasping it. As 
shown in Figure 2,  the model represents a view of the hand a t  
state 1, with n o  object in sight, a t  state 2, the object starts to 
appear, at state 3,  the object is in the claws of the gripper and 
at state 4, the claws of the gripper close on the object. Different 
orientations for the approaching hand are allowable and observ- 
able. State changes occur only when the object appear in sight 
or when the hand encloses it. It should be noted that these 
states can be considered as the set of “good” states E ,  since 
these states are the expected different visual configurations of a 
hand and object within a grasping task. States 5 and 6 represent 
instability in the system as they describe tlie situation where the 
hand is not centered with respect to the camera imaging plane. 
The events are defined as motion vectors or motion vector prob- 
ability distributions, as will be described later, that causes state 
transitions and as the appearance of the object into the viewed 
scene. The controllable events are denoted by “: 1’. 

Figure 2 : A Model for a Grasping Task 

3.2 Developing the Observer 

In order to know the current state of the manipulation process 
we need to observe the sequence of events occurring in the system 
and make decisions regarding the state of the automaton, state 
ambiguities are allowed to occur, however, they are required to 
be resolvable after a bounded interval of events. The goal will 
be to  make the system a strongly output stabilizable one and/or 
construct an observer to satisfy specific task-oriented visual re- 
quirements. As an example, for the model of the grasping task, 
an observer can be formed for the system as shown in Figure 3. 
It can be easily seen that the system can be made stable with 
respect to the set Eo.  

3.3 Identifying Motion Events 

We use the image motion to estimate the hand movement. This 
task can be accomplished by either feature tracking or by com- 
puting the full optic flow. The image flow detection technique we 
use is based on the sum-of-squared-differences optic flow. The 
sensor acquisition procedure (grabbing images) and uncertainty 



in image processing mechanisms for determining features are fac- 
tors that  should be taken into consideration when we compute 
the uncertainty in the optic flow. 

Figure 3 : Observer for the Grasping System 

One can model an arbitrary 3-D motion in terms of stationary- 
scene/moving-viewer as shown in Figure 4. The optical flow a t  
the image plane can be related to the 3-D world as indicated by 
the following pair of equations for each point (z, y)  in the image 
plane [la] : 

vy = { y$ - T} + [ (1 + y2) Rx - zyRy - ZRZ] (3) 

where v, and vy are the image velocity a t  image location (x,y), 
( V x ,  Vy , Vz)'  and (Rx, f l y ,  Rz) are the translational and rota- 
tional velocity vectors of the observer, and Z is the unknown 
distance from the camera to the object. In this system of equa- 
tions, the only knowns are the 2-D vectors U, and v,, if we use 
the formulation with uncertainty then basically the 2-D vectors 
are random variables with a known probability distribution. A 
number of techniques can be used to linearize the system of 
equations and t o  solve for the motion and structure parameters 
as random variables (4,5,15]. 

Figure 4 : 3-D Formulation for Stationary-Scene/Moving Viewer 

4 Modeling and Recovering 3-D Uncer- 
taint ies 

The uncertainty in the recovered image flow values results from 
sensor uncertainties and noise and from the image processing 
techniques used to extract and track features. We use a static 
camera calibration technique to model the uncertainty in 3-D 
to  2-D feature locations. The strategy used to  find the 2-D 
uncertainty in the features 2-D representation is to  utilize the 
recovered camera parameters and the 3-D world coordinates 
(xw,yw,zw) of a known set of points and compute the corre- 
sponding pixel coordinates, for points distributed throughout 
the image plane a number of times, find the actual feature pixel 
coordinates and construct 2-D histograms for the displacements 
from the recovered coordinates for the experiments performed. 
The number of the experiments giving a certain displacement er- 
ror would be the z axis of this histogram, while the z and y axis 
are the displacement error. The three dimensional histogram 
functions are then normalized such that the volume under the 
histogram is equal to  1 unit volume and the resulting normalized 
function is used as the distribution of pixel displacement error. 

The spatial uncertainty in the image processing technique can 
be modeled by using synthesized images and corrupting them, 
then applying the feature extraction mechanism to both images 
and computing the resulting spatial histogram for the error in 
finding features. The probability density function for the error 
in finding the flow vectors can thus be computed as a spatial 
convolution of the sensor and strategy uncertainties. We then 
eliminate the unrealistic motion estimates by using the physi- 
cal (geometric and mechanical) limitations of the manipulating 
hand. Assuming that feature points lie on a planar surface on 
the hand, then we can develop bounds on the coefficients of the 
motion equations, which are second degree functions in z and y 
in three dimensions, U, = fi(z,y) and U,, = fi(x,y). 
Figure 5 indicates the maximal U, that  can ever be registered on 
the CCD array of the camera, the z and y are in millimeters and 
the 3: - y plane represents the CCD image plane, the depth 2 is 
the maximal U, in millimeters on the CCD array that can ever 
be registered. As an example, we write the equation governing 
the maximum uz value in the first quadrant of the z - y plane 
(z+, Y+). 

>\ i/, 
Figure 5 : Maximal v, 



where the subscripts s and 1 denote lower and upper limits, 
respectively. The above envelopes are then used to reject un- 
realistic 2-D velocity estimates a t  different pixel coordinates in 
the image. The 2-D uncertainties are then used to recover the 
3-D uncertainties in the motion and structure parameters. The 
system is linearized by either dividing the parameter space into 
three subspaces for the translational, rotational and structure 
parameters and solving iteratively or using other linearization 
techniques and/or assumptions to solve a linear system of ran- 
dom variables [4,5,6,15,16,16]. As an example, the recovered 
3-D translational velocity cumulative density function in the 2 
direction 
and 1’2 = 

for 
: 13 
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5 Conclusions 

State transitions are asserted within the DEDS observer model 
according to the probability value of the occurrence of an event. 
Events are thus defined as ranges for the different parameters. 
The problem then reduces to computing the corresponding areas 
under the refined distribution curves. An obvious way of using 
those probability values is to establish some threshold values and 
assert transitions according to those thresholds. It might be the 
case that none of the obtained probability values exceeds the set 
threshold value and/or all values are very low. In that case, there 
is agood chance that we are at either the wrong automata state. 
The remedy to such problems can be implemented through time 
proximity, that  is, wait for a while (which is to be preset) till 
a strong probability value is registered and/or backtrack in the 
automaton model for the observer till a high enough probability 
value is asserted, a fail state is reached or the initial ambiguity is 
asserted. The backtracking strategy can be implemented using a 
stack-like structure associated with each state that has already 
been traversed, which includes a sorted list of the computed 
event probabilities and a father-state variable. 

Figure 7 : A Grasping Task 

Experiments were performed to observe the robot hand. The 
low level visual feature acquisition is perfornied on the Datacube 
MaxVideo pipelined video processor at frame rate. The observer 
and manipluating robots are both PUMA 5GO’s and the Lord ex- 
perimental gripper is used as the manipulating hand. A grasping 
task using the Lord gripper, as seen by the observer, is shown in 
Figure 7. Thus, we have proposed a new approach to solving the 
problem of observing a moving agent. Our  approach uses the 
formulation of discrete event dynamic systems as a high-level 
model for the framework of evolution of the visual relationship 
over time. The proposed formulation can be extended to accom- 
modate for niore manipulation processes. Increasing the number 
of states and expanding the events set would allow for a variety 
of manipulating actions. 
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